Python十大语法
Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。
1. for - else
什么?不是 if 和 else 才是原配吗?No,你可能不知道,else 是个脚踩两只船的家伙,for 和 else 也是一对,而且是合法的。十大装B语法,for-else 绝对算得上南无湾!不信,请看:
>>> for i in [1,2,3,4]:
print(i)
else:
print(i, '我是else')
1
2
3
4
4 我是else
如果在 for 和 else 之间(循环体内)有第三者 if 插足,也不会影响 for 和 else 的关系。因为 for 的级别比 if 高,else 又是一个攀附权贵的家伙,根本不在乎是否有 if,以及是否执行了满足 if 条件的语句。else 的眼里只有 for,只要 for 顺利执行完毕,else 就会屁颠儿屁颠儿地跑一遍:
>>> for i in [1,2,3,4]:
if i > 2:
print(i)
else:
print(i, '我是else')
3
4
4 我是else
那么,如何拆散 for 和 else 这对冤家呢?只有当 for 循环被 break 语句中断之后,才会跳过 else 语句:
>>> for i in [1,2,3,4]:
if i>2:
print(i)
break
else:
print(i, '我是else')
3
2. 一颗星(*)和两颗星(**)
有没有发现,星(*)真是一个神奇的符号!想一想,没有它,C语言还有啥好玩的?同样,因为有它,Python 才会如此的仪态万方、风姿绰约、楚楚动人!Python 函数支持默认参数和可变参数,一颗星表示不限数量的单值参数,两颗星表示不限数量的键值对参数。
我们还是举例说明吧:设计一个函数,返回多个输入数值的和。我们固然可以把这些输入数值做成一个list传给函数,但这个方法,远没有使用一颗星的可变参数来得优雅:
>>> def multi_sum(*args):
s = 0
for item in args:
s += item
return s
>>> multi_sum(3,4,5)
12
Python 函数允许同时全部或部分使用固定参数、默认参数、单值(一颗星)可变参数、键值对(两颗星)可变参数,使用时必须按照前述顺序书写。
>>> def do_something(name, age, gender='男', *args, **kwds):
print('姓名:%s,年龄:%d,性别:%s'%(name, age, gender))
print(args)
print(kwds)
>>> do_something('xufive', 50, '男', 175, 75, math=99, english=90)
姓名:xufive,年龄:50,性别:男
(175, 75)
{'math': 99, 'english': 90}
此外,一颗星和两颗星还可用于列表、元组、字典的解包,看起来更像C语言:
>>> a = (1,2,3)
>>> print(a)
(1, 2, 3)
>>> print(*a)
1 2 3
>>> b = [1,2,3]
>>> print(b)
[1, 2, 3]
>>> print(*b)
1 2 3
>>> c = {'name':'xufive', 'age':51}
>>> print(c)
{'name': 'xufive', 'age': 51}
>>> print(*c)
name age
>>> print('name:{name}, age:{age}'.format(**c))
name:xufive, age:51
3. 三元表达式
熟悉 C/C++ 的程序员,初上手 python 时,一定会怀念经典的三元操作符,因为想表达同样的思想,用python 写起来似乎更麻烦。比如:
>>> y = 5
>>> if y < 0:
print('y是一个负数')
else:
print('y是一个非负数')
y是一个非负数
其实,python 是支持三元表达式的,只是稍微怪异了一点,类似于我们山东人讲话。比如,山东人最喜欢用倒装句:打球去吧,要是不下雨的话;下雨,咱就去自习室。翻译成三元表达式就是:
打球去吧
if
不下雨else
去自习室
来看看三元表达式具体的使用:
>>> y = 5
>>> print('y是一个负数' if y < 0 else 'y是一个非负数')
y是一个非负数
python 的三元表达式也可以用来赋值:
>>> y = 5
>>> x = -1 if y < 0 else 1
>>> x
1
4. with - as
with 这个词儿,英文里面不难翻译,但在 Python 语法中怎么翻译,我还真想不出来,大致上是一种上下文管理协议。作为初学者,不用关注 with 的各种方法以及机制如何,只需要了解它的应用场景就可以了。with 语句适合一些事先需要准备,事后需要处理的任务,比如,文件操作,需要先打开文件,操作完成后需要关闭文件。如果不使用with,文件操作通常得这样:
fp = open(r"D:\CSDN\Column\temp\mpmap.py", 'r')
try:
contents = fp.readlines()
finally:
fp.close()
如果使用 with - as,那就优雅多了:
>>> with open(r"D:\CSDN\Column\temp\mpmap.py", 'r') as fp:
contents = fp.readlines()
5. 列表推导式
在各种稀奇古怪的语法中,列表推导式的使用频率应该时最高的,对于代码的简化效果也非常明显。比如,求列表各元素的平方,通常应该这样写(当然也有其他写法,比如使用map函数):
>>> a = [1, 2, 3, 4, 5]
>>> result = list()
>>> for i in a:
result.append(i*i)
>>> result
[1, 4, 9, 16, 25]
如果使用列表推导式,看起来就舒服多了:
>>> a = [1, 2, 3, 4, 5]
>>> result = [i*i for i in a]
>>> result
[1, 4, 9, 16, 25]
事实上,推导式不仅支持列表,也支持字典、集合、元组等对象。有兴趣的话,可以自行研究。我有一篇博文《一行 Python 代码能实现什么丧心病狂的功能?》,里面的例子,都是列表推导式实现的。
6. 列表索引的各种骚操作
Python 引入负整数作为数组的索引,这绝对是喜大普奔之举。想想看,在C/C++中,想要数组最后一个元素,得先取得数组长度,减一之后做索引,严重影响了思维的连贯性。Python语言之所以获得成功,我个人觉得,在诸多因素里面,列表操作的便捷性是不容忽视的一点。请看:
>>> a = [0, 1, 2, 3, 4, 5]
>>> a[2:4]
[2, 3]
>>> a[3:]
[3, 4, 5]
>>> a[1:]
[1, 2, 3, 4, 5]
>>> a[:]
[0, 1, 2, 3, 4, 5]
>>> a[::2]
[0, 2, 4]
>>> a[1::2]
[1, 3, 5]
>>> a[-1]
5
>>> a[-2]
4
>>> a[1:-1]
[1, 2, 3, 4]
>>> a[::-1]
[5, 4, 3, 2, 1, 0]
如果说,这些你都很熟悉,也经常用,那么接下来这个用法,你一定会感觉很神奇:
>>> a = [0, 1, 2, 3, 4, 5]
>>> b = ['a', 'b']
>>> a[2:2] = b
>>> a
[0, 1, 'a', 'b', 2, 3, 4, 5]
>>> a[3:6] = b
>>> a
[0, 1, 'a', 'a', 'b', 4, 5]
7. lambda函数
lambda 听起来很高大上,其实就是匿名函数(了解js的同学一定很熟悉匿名函数)。匿名函数的应用场景是什么呢?就是仅在定义匿名函数的地方使用这个函数,其他地方用不到,所以就不需要给它取个阿猫阿狗之类的名字了。下面是一个求和的匿名函数,输入参数有两个,x和y,函数体就是x+y,省略了return关键字。
>>> lambda x,y: x+y
<function <lambda> at 0x000001B2DE5BD598>
>>> (lambda x,y: x+y)(3,4) # 因为匿名函数没有名字,使用的时候要用括号把它包起来
匿名函数一般不会单独使用,而是配合其他方法,为其他方法提供内置的算法或判断条件。比如,使用排序函数sorted对多维数组或者字典排序时,就可以指定排序规则。
>>> a = [{'name':'B', 'age':50}, {'name':'A', 'age':30}, {'name':'C', 'age':40}]
>>> sorted(a, key=lambda x:x['name']) # 按姓名排序
[{'name': 'A', 'age': 30}, {'name': 'B', 'age': 50}, {'name': 'C', 'age': 40}]
>>> sorted(a, key=lambda x:x['age']) # 按年龄排序
[{'name': 'A', 'age': 30}, {'name': 'C', 'age': 40}, {'name': 'B', 'age': 50}]
再举一个数组元素求平方的例子,这次用map函数:
>>> a = [1,2,3]
>>> for item in map(lambda x:x*x, a):
print(item, end=', ')
1, 4, 9,
8. yield 以及生成器和迭代器
yield 这词儿,真不好翻译,翻词典也没用。我干脆就读作“一爱得”,算是外来词汇吧。要理解 yield,得先了解 generator(生成器)。要了解generator,得先知道 iterator(迭代器)。哈哈哈,绕晕了吧?算了,我还是说白话吧。
话说py2时代,range()返回的是list,但如果range(10000000)的话,会消耗大量内存资源,所以,py2又搞了一个xrange()来解决这个问题。py3则只保留了xrange(),但写作range()。xrange()返回的就是一个迭代器,它可以像list那样被遍历,但又不占用多少内存。generator(生成器)是一种特殊的迭代器,只能被遍历一次,遍历结束,就自动消失了。总之,不管是迭代器还是生成器,都是为了避免使用list,从而节省内存。那么,如何得到迭代器和生成器呢?
python内置了迭代函数 iter,用于生成迭代器,用法如下:
>>> a = [1,2,3]
>>> a_iter = iter(a)
>>> a_iter
<list_iterator object at 0x000001B2DE434BA8>
>>> for i in a_iter:
print(i, end=', ')
1, 2, 3,
yield 则是用于构造生成器的。比如,我们要写一个函数,返回从0到某正整数的所有整数的平方,传统的代码写法是这样的:
>>> def get_square(n):
result = list()
for i in range(n):
result.append(pow(i,2))
return result
>>> print(get_square(5))
[0, 1, 4, 9, 16]
但是如果计算1亿以内的所有整数的平方,这个函数的内存开销会非常大,这是 yield 就可以大显身手了:
>>> def get_square(n):
for i in range(n):
yield(pow(i,2))
>>> a = get_square(5)
>>> a
<generator object get_square at 0x000001B2DE5CACF0>
>>> for i in a:
print(i, end=', ')
0, 1, 4, 9, 16,
如果再次遍历,则不会有输出了。
9. 装饰器
刚弄明白迭代器和生成器,这又来个装饰器,Python 咋这么多器呢?的确,Python 为我们提供了很多的武器,装饰器就是最有力的武器之一。装饰器很强大,我在这里尝试从需求的角度,用一个简单的例子,说明装饰器的使用方法和制造工艺。
假如我们需要定义很多个函数,在每个函数运行的时候要显示这个函数的运行时长,解决方案有很多。比如,可以在调用每个函数之前读一下时间戳,每个函数运行结束后再读一下时间戳,求差即可;也可以在每个函数体内的开始和结束位置上读时间戳,最后求差。不过,这两个方法,都没有使用装饰器那么简单、优雅。下面的例子,很好地展示了这一点。
>>> import time
>>> def timer(func):
def wrapper(*args,**kwds):
t0 = time.time()
func(*args,**kwds)
t1 = time.time()
print('耗时%0.3f'%(t1-t0,))
return wrapper
>>> @timer
def do_something(delay):
print('函数do_something开始')
time.sleep(delay)
print('函数do_something结束')
>>> do_something(3)
函数do_something开始
函数do_something结束
耗时3.077
timer() 是我们定义的装饰器函数,使用@把它附加在任何一个函数(比如do_something)定义之前,就等于把新定义的函数,当成了装饰器函数的输入参数。运行 do_something() 函数,可以理解为执行了timer(do_something) 。细节虽然复杂,不过这么理解不会偏差太大,且更易于把握装饰器的制造和使用。
10. 巧用断言assert
所谓断言,就是声明表达式的布尔值必须为真的判定,否则将触发 AssertionError 异常。严格来讲,assert是调试手段,不宜使用在生产环境中,但这不影响我们用断言来实现一些特定功能,比如,输入参数的格式、类型验证等。
>>> def i_want_to_sleep(delay):
assert(isinstance(delay, (int,float))), '函数参数必须为整数或浮点数'
print('开始睡觉')
time.sleep(delay)
print('睡醒了')
>>> i_want_to_sleep(1.1)
开始睡觉
睡醒了
>>> i_want_to_sleep(2)
开始睡觉
睡醒了
>>> i_want_to_sleep('2')
Traceback (most recent call last):
File "<pyshell#247>", line 1, in <module>
i_want_to_sleep('2')
File "<pyshell#244>", line 2, in i_want_to_sleep
assert(isinstance(delay, (int,float))), '函数参数必须为整数或浮点数'
AssertionError: 函数参数必须为整数或浮点数
11.其他高阶函数
map()函数【全走一遍生成一个新的list】
map()是 Python 内置的高阶函数,它接收一个函数 f 和一个list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回。
def f(x):
return x * x
print map(f,[1,2,3,4,5,6,7]) #list里的每个元素都会走一遍f(x)方法
结果将会是:
[1, 4, 9, 10, 25, 36, 49]
reduce()函数【全走一遍生成一个数】
reduce()函数也是Python内置的一个高阶函数。reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值。
def f(x ,y ):
return x * y
print reduce(f,[1,2,3,4]) #1*2*3*4=24
# 给初始值
def f(a,b):
return a+ b
print reduce(f,[1,2,3,4],10) #1+2+3+4+10.这里的第三个参数是做为初始值的。
filter()函数【全走一遍筛掉不符合条件的】
filter()函数是 Python 内置的另一个有用的高阶函数,filter()函数接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,返回 True或 False,filter()根据判断结果自动过滤掉不符合条件的元素,返回由符合条件元素组成的新list。
def is_odd(x):
return x%2==1
print filter(is_odd,[1,2,3,4,5,6,7]) # [1, 3, 5, 7]
sorted()函数
sorted() 函数对所有可迭代的对象进行排序操作。
sort 与 sorted 区别: sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作。 list 的 sort 方法返回的是对已经存在的列表进行操作,而内建函数 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。
语法 sorted 语法:
sorted(iterable[, cmp[, key[, reverse]]])
参数说明:
- iterable -可迭代对象。
- cmp -比较的函数,这个具有两个参数,参数的值都是从可迭代对象中取出,此函数必须遵守的规则为,大于则返回1,小于则返回-1,等于则返回0。
- key -主要是用来进行比较的元素,只有一个参数,具体的函数的参数就是取自于可迭代对象中,指定可迭代对象中的一个元素来进行排序。
- reverse -排序规则,reverse = True 降序 , reverse = False 升序(默认)。
返回值
返回重新排序的列表。
>>>a = [5,7,6,3,4,1,2]
>>> b = sorted(a) # 保留原列表
>>> a
[5, 7, 6, 3, 4, 1, 2]
>>> b
[1, 2, 3, 4, 5, 6, 7]
>>> L=[('b',2),('a',1),('c',3),('d',4)]
>>> sorted(L, cmp=lambda x,y:cmp(x[1],y[1])) # 利用cmp函数
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
>>> sorted(L, key=lambda x:x[1]) # 利用key
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
>>> students = [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
>>> sorted(students, key=lambda s: s[2]) # 按年龄排序
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
>>> sorted(students, key=lambda s: s[2], reverse=True) # 按降序
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
>>>