计算机网络学习总结
图解网络介绍 小林coding (xiaolincoding.com)
基础篇
网络模型
-
网络接口层(数据链路层)传输单位是帧(frame),IP 层的传输单位是包(packet),TCP 层的传输单位是段(segment),HTTP 的传输单位则是消息或报文(message)。但这些名词并没有什么本质的区分,可以统称为数据包
-
网络层功能:寻址、路由;IP 协议的寻址作用是告诉我们去往下一个目的地该朝哪个方向走,路由则是根据「下一个目的地」选择路径。寻址更像在导航,路由更像在操作方向盘。
浏览器工作流程总结
HTTP(解析URL)
DNS(查询服务器域名对应的 IP 地址)
- 在域名中,越靠右的位置表示其层级越高。
- 只指路不带路。
- 浏览器会先看自身有没有对这个域名的缓存,如果有,就直接返回,如果没有,就去问操作系统,操作系统也会去看自己的缓存,如果有,就直接返回,如果没有,再去 hosts 文件看,也没有,才会去问「本地 DNS 服务器」。
协议栈(把 HTTP 的传输工作交给操作系统中的协议栈。)
应用程序(浏览器)通过调用 Socket 库,来委托协议栈工作。协议栈的上半部分有两块,分别是负责收发数据的 TCP 和 UDP 协议,这两个传输协议会接受应用层的委托执行收发数据的操作。
协议栈的下面一半是用 IP 协议控制网络包收发操作,在互联网上传数据时,数据会被切分成一块块的网络包,而将网络包发送给对方的操作就是由 IP 负责的。
此外 IP 中还包括 ICMP
协议和 ARP
协议。
ICMP
用于告知网络包传送过程中产生的错误以及各种控制信息。ARP
用于根据 IP 地址查询相应的以太网 MAC 地址。
IP 下面的网卡驱动程序负责控制网卡硬件,而最下面的网卡则负责完成实际的收发操作,也就是对网线中的信号执行发送和接收操作。
TCP(HTTP 是基于 TCP 协议传输的、可靠传输)
TCP 传输数据之前,要先三次握手建立连接
首先,源端口号和目标端口号是不可少的,如果没有这两个端口号,数据就不知道应该发给哪个应用。
接下来有包的序号,这个是为了解决包乱序的问题。
还有应该有的是确认号,目的是确认发出去对方是否有收到。如果没有收到就应该重新发送,直到送达,这个是为了解决丢包的问题。
接下来还有一些状态位。例如 SYN
是发起一个连接,ACK
是回复,RST
是重新连接,FIN
是结束连接等。TCP 是面向连接的,因而双方要维护连接的状态,这些带状态位的包的发送,会引起双方的状态变更。
还有一个重要的就是窗口大小。TCP 要做流量控制,通信双方各声明一个窗口(缓存大小),标识自己当前能够的处理能力,别发送的太快,撑死我,也别发的太慢,饿死我。
除了做流量控制以外,TCP还会做拥塞控制,对于真正的通路堵车不堵车,它无能为力,唯一能做的就是控制自己,也即控制发送的速度。不能改变世界,就改变自己嘛。
TCP 传输数据之前,要先三次握手建立连接
- 所以三次握手目的是保证双方都有发送和接收的能力。
所以三次握手目的是保证双方都有发送和接收的能力。
TCP四次挥手断开连接
![img](https://upload-images.jianshu.io/upload_images/13488772-a7523a1465e5c427?imageMogr2/auto-orient/strip | imageView2/2/w/801/format/webp) |
![img](https://upload-images.jianshu.io/upload_images/13488772-f6a9c1b8f80d1a2f?imageMogr2/auto-orient/strip | imageView2/2/w/797/format/webp) |
TCP分割数据
IP(远程定位)
在 IP 协议里面需要有源地址 IP 和 目标地址 IP:
- 源地址IP,即是客户端输出的 IP 地址;
- 目标地址,即通过 DNS 域名解析得到的 Web 服务器 IP。
因为 HTTP 是经过 TCP 传输的,所以在 IP 包头的协议号,要填写为 06
(十六进制),表示协议为 TCP。
MAC(两点传输)
MAC 报头格式
在 MAC 包头里需要发送方 MAC 地址和接收方目标 MAC 地址,用于两点之间的传输。
一般在 TCP/IP 通信里,MAC 包头的协议类型只使用:
0800
: IP 协议0806
: ARP 协议
网卡(出口)
网络包只是存放在内存中的一串二进制数字信息,没有办法直接发送给对方。因此,我们需要将数字信息转换为电信号,才能在网线上传输,也就是说,这才是真正的数据发送过程。
负责执行这一操作的是网卡,要控制网卡还需要靠网卡驱动程序。
网卡驱动获取网络包之后,会将其复制到网卡内的缓存区中,接着会在其开头加上报头和起始帧分界符,在末尾加上用于检测错误的帧校验序列。
交换机(送别者)
交换机的端口不具有 MAC 地址。
所以,交换机根据 MAC 地址表查找 MAC 地址,然后将信号发送到相应的端口。
路由器(出境大门)
路由器与交换机的区别
网络包经过交换机之后,现在到达了路由器,并在此被转发到下一个路由器或目标设备。
这一步转发的工作原理和交换机类似,也是通过查表判断包转发的目标。
不过在具体的操作过程上,路由器和交换机是有区别的。
- 因为路由器是基于 IP 设计的,俗称三层网络设备,路由器的各个端口都具有 MAC 地址和 IP 地址;
- 而交换机是基于以太网设计的,俗称二层网络设备,交换机的端口不具有 MAC 地址。
路由器基本原理
路由器的端口具有 MAC 地址,因此它就能够成为以太网的发送方和接收方;同时还具有 IP 地址,从这个意义上来说,它和计算机的网卡是一样的。
当转发包时,首先路由器端口会接收发给自己的以太网包,然后路由表查询转发目标,再由相应的端口作为发送方将以太网包发送出去。
路由器的包接收操作
首先,电信号到达网线接口部分,路由器中的模块会将电信号转成数字信号,然后通过包末尾的 FCS
进行错误校验。
如果没问题则检查 MAC 头部中的接收方 MAC 地址,看看是不是发给自己的包,如果是就放到接收缓冲区中,否则就丢弃这个包。
总的来说,路由器的端口都具有 MAC 地址,只接收与自身地址匹配的包,遇到不匹配的包则直接丢弃。
查询路由表确定输出端口
完成包接收操作之后,路由器就会去掉包开头的 MAC 头部。
MAC 头部的作用就是将包送达路由器,其中的接收方 MAC 地址就是路由器端口的 MAC 地址。因此,当包到达路由器之后,MAC 头部的任务就完成了,于是 MAC 头部就会被丢弃。
接下来,路由器会根据 MAC 头部后方的 IP
头部中的内容进行包的转发操作。
转发操作分为几个阶段,首先是查询路由表判断转发目标。
不知你发现了没有,在网络包传输的过程中,源 IP 和目标 IP 始终是不会变的,一直变化的是 MAC 地址,因为需要 MAC 地址在以太网内进行两个设备之间的包传输。
服务器与客户端(互相扒皮)
HTTP篇
HTTP基本概念
-
HTTP 协议是一个双向协议。
-
HTTP 是一个在计算机世界里专门用来在两点之间传输数据的约定和规范。
-
HTTP 是一个在计算机世界里专门在「两点」之间「传输」文字、图片、音频、视频等「超文本」数据的「约定和规范」。
HTTP 常见的状态码
1xx
类状态码属于提示信息,是协议处理中的一种中间状态,实际用到的比较少。
2xx
类状态码表示服务器成功处理了客户端的请求,也是我们最愿意看到的状态。
- 「200 OK」是最常见的成功状态码,表示一切正常。如果是非
HEAD
请求,服务器返回的响应头都会有 body 数据。 - 「204 No Content」也是常见的成功状态码,与 200 OK 基本相同,但响应头没有 body 数据。
- 「206 Partial Content」是应用于 HTTP 分块下载或断点续传,表示响应返回的 body 数据并不是资源的全部,而是其中的一部分,也是服务器处理成功的状态。
3xx
类状态码表示客户端请求的资源发生了变动,需要客户端用新的 URL 重新发送请求获取资源,也就是重定向。
- 「301 Moved Permanently」表示永久重定向,说明请求的资源已经不存在了,需改用新的 URL 再次访问。
- 「302 Found」表示临时重定向,说明请求的资源还在,但暂时需要用另一个 URL 来访问。
301 和 302 都会在响应头里使用字段 Location
,指明后续要跳转的 URL,浏览器会自动重定向新的 URL。
- 「304 Not Modified」不具有跳转的含义,表示资源未修改,重定向已存在的缓冲文件,也称缓存重定向,也就是告诉客户端可以继续使用缓存资源,用于缓存控制。
4xx
类状态码表示客户端发送的报文有误,服务器无法处理,也就是错误码的含义。
- 「400 Bad Request」表示客户端请求的报文有错误,但只是个笼统的错误。
- 「403 Forbidden」表示服务器禁止访问资源,并不是客户端的请求出错。
- 「404 Not Found」表示请求的资源在服务器上不存在或未找到,所以无法提供给客户端。
5xx
类状态码表示客户端请求报文正确,但是服务器处理时内部发生了错误,属于服务器端的错误码。
- 「500 Internal Server Error」与 400 类型,是个笼统通用的错误码,服务器发生了什么错误,我们并不知道。
- 「501 Not Implemented」表示客户端请求的功能还不支持,类似“即将开业,敬请期待”的意思。
- 「502 Bad Gateway」通常是服务器作为网关或代理时返回的错误码,表示服务器自身工作正常,访问后端服务器发生了错误。
- 「503 Service Unavailable」表示服务器当前很忙,暂时无法响应客户端,类似“网络服务正忙,请稍后重试”的意思。
HTTP常见字段
-
Host字段:客户端发送请求时,用来指定服务器的域名。
-
Content-Length 字段:大家应该都知道 HTTP 是基于 TCP 传输协议进行通信的,而使用了 TCP 传输协议,就会存在一个“粘包”的问题,HTTP 协议通过设置回车符、换行符作为 HTTP header 的边界,通过 Content-Length 字段作为 HTTP body 的边界,这两个方式都是为了解决“粘包”的问题。
-
Connection 字段(Keep-Alive):
Connection
字段最常用于客户端要求服务器使用「HTTP 长连接」机制,以便其他请求复用。 -
Content-Type 字段(text/html; Charset=utf-8):
Content-Type
字段用于服务器回应时,告诉客户端,本次数据是什么格式。
-
Content-Encoding 字段:
Content-Encoding
字段说明数据的压缩方法。表示服务器返回的数据使用了什么压缩格式。
GET与POST
GET 和 POST 方法都是安全和幂等的吗?
先说明下安全和幂等的概念:
- 在 HTTP 协议里,所谓的「安全」是指请求方法不会「破坏」服务器上的资源。
- 所谓的「幂等」,意思是多次执行相同的操作,结果都是「相同」的。
如果从 RFC 规范定义的语义来看:
- GET 方法就是安全且幂等的,因为它是「只读」操作,无论操作多少次,服务器上的数据都是安全的,且每次的结果都是相同的。所以,可以对 GET 请求的数据做缓存,这个缓存可以做到浏览器本身上(彻底避免浏览器发请求),也可以做到代理上(如nginx),而且在浏览器中 GET 请求可以保存为书签。
- POST 因为是「新增或提交数据」的操作,会修改服务器上的资源,所以是不安全的,且多次提交数据就会创建多个资源,所以不是幂等的。所以,浏览器一般不会缓存 POST 请求,也不能把 POST 请求保存为书签。
做个简要的小结。
GET 的语义是请求获取指定的资源。GET 方法是安全、幂等、可被缓存的。
POST 的语义是根据请求负荷(报文主体)对指定的资源做出处理,具体的处理方式视资源类型而不同。POST 不安全,不幂等,(大部分实现)不可缓存。
注意, 上面是从 RFC 规范定义的语义来分析的。
但是实际过程中,开发者不一定会按照 RFC 规范定义的语义来实现 GET 和 POST 方法。比如:
- 可以用 GET 方法实现新增或删除数据的请求,这样实现的 GET 方法自然就不是安全和幂等。
- 可以用 POST 方法实现查询数据的请求,这样实现的 POST 方法自然就是安全和幂等。
HTTP缓存技术
HTTP 缓存有两种实现方式,分别是强制缓存和协商缓存。
强制缓存
强缓存指的是只要浏览器判断缓存没有过期,则直接使用浏览器的本地缓存,决定是否使用缓存的主动性在于浏览器这边。
强缓存是利用下面这两个 HTTP 响应头部(Response Header)字段实现的,它们都用来表示资源在客户端缓存的有效期:
Cache-Control
, 是一个相对时间;Expires
,是一个绝对时间;
如果 HTTP 响应头部同时有 Cache-Control 和 Expires 字段的话,Cache-Control 的优先级高于 Expires 。
Cache-control 选项更多一些,设置更加精细,所以建议使用 Cache-Control 来实现强缓存。具体的实现流程如下:
- 当浏览器第一次请求访问服务器资源时,服务器会在返回这个资源的同时,在 Response 头部加上 Cache-Control,Cache-Control 中设置了过期时间大小;
- 浏览器再次请求访问服务器中的该资源时,会先通过请求资源的时间与 Cache-Control 中设置的过期时间大小,来计算出该资源是否过期,如果没有,则使用该缓存,否则重新请求服务器;
- 服务器再次收到请求后,会再次更新 Response 头部的 Cache-Control。
协商缓存
当我们在浏览器使用开发者工具的时候,你可能会看到过某些请求的响应码是 304
,这个是告诉浏览器可以使用本地缓存的资源,通常这种通过服务端告知客户端是否可以使用缓存的方式被称为协商缓存。
上图就是一个协商缓存的过程,所以协商缓存就是与服务端协商之后,通过协商结果来判断是否使用本地缓存。
TCP篇
TCP基本知识
TCP 头格式有哪些?
我们先来看看 TCP 头的格式,标注颜色的表示与本文关联比较大的字段,其他字段不做详细阐述。
序列号:在建立连接时由计算机生成的随机数作为其初始值,通过 SYN 包传给接收端主机,每发送一次数据,就「累加」一次该「数据字节数」的大小。用来解决网络包乱序问题。
确认应答号:指下一次「期望」收到的数据的序列号,发送端收到这个确认应答以后可以认为在这个序号以前的数据都已经被正常接收。用来解决丢包的问题。
控制位:
- ACK:该位为
1
时,「确认应答」的字段变为有效,TCP 规定除了最初建立连接时的SYN
包之外该位必须设置为1
。 - RST:该位为
1
时,表示 TCP 连接中出现异常必须强制断开连接。 - SYN:该位为
1
时,表示希望建立连接,并在其「序列号」的字段进行序列号初始值的设定。 - FIN:该位为
1
时,表示今后不会再有数据发送,希望断开连接。当通信结束希望断开连接时,通信双方的主机之间就可以相互交换FIN
位为 1 的 TCP 段。
什么是 TCP ?
TCP 是面向连接的、可靠的、基于字节流的传输层通信协议。
- 面向连接:一定是「一对一」才能连接,不能像 UDP 协议可以一个主机同时向多个主机发送消息,也就是一对多是无法做到的;
- 可靠的:无论的网络链路中出现了怎样的链路变化,TCP 都可以保证一个报文一定能够到达接收端;
- 字节流:用户消息通过 TCP 协议传输时,消息可能会被操作系统「分组」成多个的 TCP 报文,如果接收方的程序如果不知道「消息的边界」,是无法读出一个有效的用户消息的。并且 TCP 报文是「有序的」,当「前一个」TCP 报文没有收到的时候,即使它先收到了后面的 TCP 报文,那么也不能扔给应用层去处理,同时对「重复」的 TCP 报文会自动丢弃。
什么是TCP连接
我们来看看 RFC 793 是如何定义「连接」的:
Connections: The reliability and flow control mechanisms described above require that TCPs initialize and maintain certain status information for each data stream. The combination of this information, including sockets, sequence numbers, and window sizes, is called a connection.
简单来说就是,用于保证可靠性和流量控制维护的某些状态信息,这些信息的组合,包括 Socket、序列号和窗口大小称为连接。
所以我们可以知道,建立一个 TCP 连接是需要客户端与服务端达成上述三个信息的共识。
- Socket:由 IP 地址和端口号组成
- 序列号:用来解决乱序问题等
- 窗口大小:用来做流量控制
TCP 连接建立
TCP 三次握手过程是怎样的?
TCP 是面向连接的协议,所以使用 TCP 前必须先建立连接,而建立连接是通过三次握手来进行的。三次握手的过程如下图:
- 一开始,客户端和服务端都处于
CLOSE
状态。先是服务端主动监听某个端口,处于LISTEN
状态
- 客户端会随机初始化序号(
client_isn
),将此序号置于 TCP 首部的「序号」字段中,同时把SYN
标志位置为1
,表示SYN
报文。接着把第一个 SYN 报文发送给服务端,表示向服务端发起连接,该报文不包含应用层数据,之后客户端处于SYN-SENT
状态。
- 服务端收到客户端的
SYN
报文后,首先服务端也随机初始化自己的序号(server_isn
),将此序号填入 TCP 首部的「序号」字段中,其次把 TCP 首部的「确认应答号」字段填入client_isn + 1
, 接着把SYN
和ACK
标志位置为1
。最后把该报文发给客户端,该报文也不包含应用层数据,之后服务端处于SYN-RCVD
状态。
- 客户端收到服务端报文后,还要向服务端回应最后一个应答报文,首先该应答报文 TCP 首部
ACK
标志位置为1
,其次「确认应答号」字段填入server_isn + 1
,最后把报文发送给服务端,这次报文可以携带客户到服务端的数据,之后客户端处于ESTABLISHED
状态。 - 服务端收到客户端的应答报文后,也进入
ESTABLISHED
状态。
从上面的过程可以发现第三次握手是可以携带数据的,前两次握手是不可以携带数据的,这也是面试常问的题。
一旦完成三次握手,双方都处于 ESTABLISHED
状态,此时连接就已建立完成,客户端和服务端就可以相互发送数据了。
为什么是三次握手?不是两次、四次?
相信大家比较常回答的是:“因为三次握手才能保证双方具有接收和发送的能力。”
这回答是没问题,但这回答是片面的,并没有说出主要的原因。
在前面我们知道了什么是 TCP 连接:
- 用于保证可靠性和流量控制维护的某些状态信息,这些信息的组合,包括 Socket、序列号和窗口大小称为连接。
所以,重要的是为什么三次握手才可以初始化 Socket、序列号和窗口大小并建立 TCP 连接。
接下来,以三个方面分析三次握手的原因:
- 三次握手才可以阻止重复历史连接的初始化(主要原因)
- 三次握手才可以同步双方的初始序列号
- 三次握手才可以避免资源浪费
原因一:避免历史连接
我们来看看 RFC 793 指出的 TCP 连接使用三次握手的首要原因:
The principle reason for the three-way handshake is to prevent old duplicate connection initiations from causing confusion.
简单来说,三次握手的首要原因是为了防止旧的重复连接初始化造成混乱。
我们考虑一个场景,客户端先发送了 SYN(seq = 90)报文,然后客户端宕机了,而且这个 SYN 报文还被网络阻塞了,服务端并没有收到,接着客户端重启后,又重新向服务端建立连接,发送了 SYN(seq = 100)报文(注意!不是重传 SYN,重传的 SYN 的序列号是一样的)。
看看三次握手是如何阻止历史连接的:
客户端连续发送多次 SYN(都是同一个四元组)建立连接的报文,在网络拥堵情况下:
- 一个「旧 SYN 报文」比「最新的 SYN」 报文早到达了服务端,那么此时服务端就会回一个
SYN + ACK
报文给客户端,此报文中的确认号是 91(90+1)。 - 客户端收到后,发现自己期望收到的确认号应该是 100 + 1,而不是 90 + 1,于是就会回 RST 报文。
- 服务端收到 RST 报文后,就会释放连接。
- 后续最新的 SYN 抵达了服务端后,客户端与服务端就可以正常的完成三次握手了。
上述中的「旧 SYN 报文」称为历史连接,TCP 使用三次握手建立连接的最主要原因就是防止「历史连接」初始化了连接。
TIP
有很多人问,如果服务端在收到 RST 报文之前,先收到了「新 SYN 报文」,也就是服务端收到客户端报文的顺序是:「旧 SYN 报文」->「新 SYN 报文」,此时会发生什么?
当服务端第一次收到 SYN 报文,也就是收到 「旧 SYN 报文」时,就会回复
SYN + ACK
报文给客户端,此报文中的确认号是 91(90+1)。然后这时再收到「新 SYN 报文」时,就会回 Challenge Ack (opens new window)报文给客户端,这个 ack 报文并不是确认收到「新 SYN 报文」的,而是上一次的 ack 确认号,也就是91(90+1)。所以客户端收到此 ACK 报文时,发现自己期望收到的确认号应该是 101,而不是 91,于是就会回 RST 报文。
如果是两次握手连接,就无法阻止历史连接,那为什么 TCP 两次握手为什么无法阻止历史连接呢?
我先直接说结论,主要是因为在两次握手的情况下,服务端没有中间状态给客户端来阻止历史连接,导致服务端可能建立一个历史连接,造成资源浪费。
你想想,在两次握手的情况下,服务端在收到 SYN 报文后,就进入 ESTABLISHED 状态,意味着这时可以给对方发送数据,但是客户端此时还没有进入 ESTABLISHED 状态,假设这次是历史连接,客户端判断到此次连接为历史连接,那么就会回 RST 报文来断开连接,而服务端在第一次握手的时候就进入 ESTABLISHED 状态,所以它可以发送数据的,但是它并不知道这个是历史连接,它只有在收到 RST 报文后,才会断开连接。
可以看到,如果采用两次握手建立 TCP 连接的场景下,服务端在向客户端发送数据前,并没有阻止掉历史连接,导致服务端建立了一个历史连接,又白白发送了数据,妥妥地浪费了服务端的资源。
因此,要解决这种现象,最好就是在服务端发送数据前,也就是建立连接之前,要阻止掉历史连接,这样就不会造成资源浪费,而要实现这个功能,就需要三次握手。
所以,TCP 使用三次握手建立连接的最主要原因是防止「历史连接」初始化了连接。
TIP
有人问:客户端发送三次握手(ack 报文)后就可以发送数据了,而被动方此时还是 syn_received 状态,如果 ack 丢了,那客户端发的数据是不是也白白浪费了?
不是的,即使服务端还是在 syn_received 状态,收到了客户端发送的数据,还是可以建立连接的,并且还可以正常收到这个数据包。这是因为数据报文中是有 ack 标识位,也有确认号,这个确认号就是确认收到了第二次握手。如下图:
所以,服务端收到这个数据报文,是可以正常建立连接的,然后就可以正常接收这个数据包了。
原因二:同步双方初始序列号
TCP 协议的通信双方, 都必须维护一个「序列号」, 序列号是可靠传输的一个关键因素,它的作用:
- 接收方可以去除重复的数据;
- 接收方可以根据数据包的序列号按序接收;
- 可以标识发送出去的数据包中, 哪些是已经被对方收到的(通过 ACK 报文中的序列号知道);
可见,序列号在 TCP 连接中占据着非常重要的作用,所以当客户端发送携带「初始序列号」的 SYN
报文的时候,需要服务端回一个 ACK
应答报文,表示客户端的 SYN 报文已被服务端成功接收,那当服务端发送「初始序列号」给客户端的时候,依然也要得到客户端的应答回应,这样一来一回,才能确保双方的初始序列号能被可靠的同步。
四次握手其实也能够可靠的同步双方的初始化序号,但由于第二步和第三步可以优化成一步,所以就成了「三次握手」。
而两次握手只保证了一方的初始序列号能被对方成功接收,没办法保证双方的初始序列号都能被确认接收。
原因三:避免资源浪费
如果只有「两次握手」,当客户端发生的 SYN
报文在网络中阻塞,客户端没有接收到 ACK
报文,就会重新发送 SYN
,由于没有第三次握手,服务端不清楚客户端是否收到了自己回复的 ACK
报文,所以服务端每收到一个 SYN
就只能先主动建立一个连接,这会造成什么情况呢?
如果客户端发送的 SYN
报文在网络中阻塞了,重复发送多次 SYN
报文,那么服务端在收到请求后就会建立多个冗余的无效链接,造成不必要的资源浪费。
即两次握手会造成消息滞留情况下,服务端重复接受无用的连接请求 SYN
报文,而造成重复分配资源。
TIP
很多人问,两次握手不是也可以根据上下文信息丢弃 syn 历史报文吗?
我这里两次握手是假设「由于没有第三次握手,服务端不清楚客户端是否收到了自己发送的建立连接的 ACK
确认报文,所以每收到一个 SYN
就只能先主动建立一个连接」这个场景。
当然你要实现成类似三次握手那样,根据上下文丢弃 syn 历史报文也是可以的,两次握手没有具体的实现,怎么假设都行。
小结
TCP 建立连接时,通过三次握手能防止历史连接的建立,能减少双方不必要的资源开销,能帮助双方同步初始化序列号。序列号能够保证数据包不重复、不丢弃和按序传输。
不使用「两次握手」和「四次握手」的原因:
- 「两次握手」:无法防止历史连接的建立,会造成双方资源的浪费,也无法可靠的同步双方序列号;
- 「四次握手」:三次握手就已经理论上最少可靠连接建立,所以不需要使用更多的通信次数。
建立 TCP 连接时,初始化的序列号都要求不一样
主要原因有两个方面:
- 为了防止历史报文被下一个相同四元组的连接接收(主要方面);
- 为了安全性,防止黑客伪造的相同序列号的 TCP 报文被对方接收;
四元组:
系统用一个4四元组来唯一标识一个TCP连接:{localip, localport,remoteip,remoteport}。
接下来,详细说说第一点。
假设每次建立连接,客户端和服务端的初始化序列号都是从 0 开始:
过程如下:
- 客户端和服务端建立一个 TCP 连接,在客户端发送数据包被网络阻塞了,然后超时重传了这个数据包,而此时服务端设备断电重启了,之前与客户端建立的连接就消失了,于是在收到客户端的数据包的时候就会发送 RST 报文。
- 紧接着,客户端又与服务端建立了与上一个连接相同四元组的连接;
- 在新连接建立完成后,上一个连接中被网络阻塞的数据包正好抵达了服务端,刚好该数据包的序列号正好是在服务端的接收窗口内,所以该数据包会被服务端正常接收,就会造成数据错乱。
可以看到,如果每次建立连接,客户端和服务端的初始化序列号都是一样的话,很容易出现历史报文被下一个相同四元组的连接接收的问题。
如果每次建立连接客户端和服务端的初始化序列号都「不一样」,就有大概率因为历史报文的序列号「不在」对方接收窗口,从而很大程度上避免了历史报文,比如下图:
相反,如果每次建立连接客户端和服务端的初始化序列号都「一样」,就有大概率遇到历史报文的序列号刚「好在」对方的接收窗口内,从而导致历史报文被新连接成功接收。
所以,每次初始化序列号不一样很大程度上能够避免历史报文被下一个相同四元组的连接接收,注意是很大程度上,并不是完全避免了(因为序列号会有回绕的问题,所以需要用时间戳的机制来判断历史报文,详细看篇:TCP 是如何避免历史报文的? (opens new window))
既然 IP 层会分片,为什么 TCP 层还需要 MSS 呢?
我们先来认识下 MTU 和 MSS
MTU
:一个网络包的最大长度,以太网中一般为1500
字节;MSS
:除去 IP 和 TCP 头部之后,一个网络包所能容纳的 TCP 数据的最大长度;
如果在 TCP 的整个报文(头部 + 数据)交给 IP 层进行分片,会有什么异常呢?
当 IP 层有一个超过 MTU
大小的数据(TCP 头部 + TCP 数据)要发送,那么 IP 层就要进行分片,把数据分片成若干片,保证每一个分片都小于 MTU。把一份 IP 数据报进行分片以后,由目标主机的 IP 层来进行重新组装后,再交给上一层 TCP 传输层。
这看起来井然有序,但这存在隐患的,那么当如果一个 IP 分片丢失,整个 IP 报文的所有分片都得重传。
因为 IP 层本身没有超时重传机制,它由传输层的 TCP 来负责超时和重传。
当某一个 IP 分片丢失后,接收方的 IP 层就无法组装成一个完整的 TCP 报文(头部 + 数据),也就无法将数据报文送到 TCP 层,所以接收方不会响应 ACK 给发送方,因为发送方迟迟收不到 ACK 确认报文,所以会触发超时重传,就会重发「整个 TCP 报文(头部 + 数据)」。
因此,可以得知由 IP 层进行分片传输,是非常没有效率的。
所以,为了达到最佳的传输效能 TCP 协议在建立连接的时候通常要协商双方的 MSS 值,当 TCP 层发现数据超过 MSS 时,则就先会进行分片,当然由它形成的 IP 包的长度也就不会大于 MTU ,自然也就不用 IP 分片了。
经过 TCP 层分片后,如果一个 TCP 分片丢失后,进行重发时也是以 MSS 为单位,而不用重传所有的分片,大大增加了重传的效率。
第一次握手丢失了,会发生什么?
当客户端想和服务端建立 TCP 连接的时候,首先第一个发的就是 SYN 报文,然后进入到 SYN_SENT
状态。
在这之后,如果客户端迟迟收不到服务端的 SYN-ACK 报文(第二次握手),就会触发「超时重传」机制,重传 SYN 报文,而且重传的 SYN 报文的序列号都是一样的。
不同版本的操作系统可能超时时间不同,有的 1 秒的,也有 3 秒的,这个超时时间是写死在内核里的,如果想要更改则需要重新编译内核,比较麻烦。
当客户端在 1 秒后没收到服务端的 SYN-ACK 报文后,客户端就会重发 SYN 报文,那到底重发几次呢?
在 Linux 里,客户端的 SYN 报文最大重传次数由 tcp_syn_retries
内核参数控制,这个参数是可以自定义的,默认值一般是 5。
# cat /proc/sys/net/ipv4/tcp_syn_retries
5
通常,第一次超时重传是在 1 秒后,第二次超时重传是在 2 秒,第三次超时重传是在 4 秒后,第四次超时重传是在 8 秒后,第五次是在超时重传 16 秒后。没错,每次超时的时间是上一次的 2 倍。
当第五次超时重传后,会继续等待 32 秒,如果服务端仍然没有回应 ACK,客户端就不再发送 SYN 包,然后断开 TCP 连接。
所以,总耗时是 1+2+4+8+16+32=63 秒,大约 1 分钟左右。
举个例子,假设 tcp_syn_retries 参数值为 3,那么当客户端的 SYN 报文一直在网络中丢失时,会发生下图的过程:
具体过程:
- 当客户端超时重传 3 次 SYN 报文后,由于 tcp_syn_retries 为 3,已达到最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到服务端的第二次握手(SYN-ACK 报文),那么客户端就会断开连接。
第二次握手丢失了,会发生什么?
当服务端收到客户端的第一次握手后,就会回 SYN-ACK 报文给客户端,这个就是第二次握手,此时服务端会进入 SYN_RCVD
状态。
第二次握手的 SYN-ACK
报文其实有两个目的 :
- 第二次握手里的 ACK, 是对第一次握手的确认报文;
- 第二次握手里的 SYN,是服务端发起建立 TCP 连接的报文;
所以,如果第二次握手丢了,就会发生比较有意思的事情,具体会怎么样呢?
因为第二次握手报文里是包含对客户端的第一次握手的 ACK 确认报文,所以,如果客户端迟迟没有收到第二次握手,那么客户端就觉得可能自己的 SYN 报文(第一次握手)丢失了,于是客户端就会触发超时重传机制,重传 SYN 报文。
然后,因为第二次握手中包含服务端的 SYN 报文,所以当客户端收到后,需要给服务端发送 ACK 确认报文(第三次握手),服务端才会认为该 SYN 报文被客户端收到了。
那么,如果第二次握手丢失了,服务端就收不到第三次握手,于是服务端这边会触发超时重传机制,重传 SYN-ACK 报文。
在 Linux 下,SYN-ACK 报文的最大重传次数由 tcp_synack_retries
内核参数决定,默认值是 5。
# cat /proc/sys/net/ipv4/tcp_synack_retries
5
因此,当第二次握手丢失了,客户端和服务端都会重传:
- 客户端会重传 SYN 报文,也就是第一次握手,最大重传次数由
tcp_syn_retries
内核参数决定; - 服务端会重传 SYN-ACK 报文,也就是第二次握手,最大重传次数由
tcp_synack_retries
内核参数决定。
举个例子,假设 tcp_syn_retries 参数值为 1,tcp_synack_retries 参数值为 2,那么当第二次握手一直丢失时,发生的过程如下图:
具体过程:
- 当客户端超时重传 1 次 SYN 报文后,由于 tcp_syn_retries 为 1,已达到最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到服务端的第二次握手(SYN-ACK 报文),那么客户端就会断开连接。
- 当服务端超时重传 2 次 SYN-ACK 报文后,由于 tcp_synack_retries 为 2,已达到最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到客户端的第三次握手(ACK 报文),那么服务端就会断开连接。
第三次握手丢失了,会发生什么?
客户端收到服务端的 SYN-ACK 报文后,就会给服务端回一个 ACK 报文,也就是第三次握手,此时客户端状态进入到 ESTABLISH
状态。
因为这个第三次握手的 ACK 是对第二次握手的 SYN 的确认报文,所以当第三次握手丢失了,如果服务端那一方迟迟收不到这个确认报文,就会触发超时重传机制,重传 SYN-ACK 报文,直到收到第三次握手,或者达到最大重传次数。
注意,ACK 报文是不会有重传的,当 ACK 丢失了,就由对方重传对应的报文。
举个例子,假设 tcp_synack_retries 参数值为 2,那么当第三次握手一直丢失时,发生的过程如下图:
具体过程:
- 当服务端超时重传 2 次 SYN-ACK 报文后,由于 tcp_synack_retries 为 2,已达到最大重传次数,于是再等待一段时间(时间为上一次超时时间的 2 倍),如果还是没能收到客户端的第三次握手(ACK 报文),那么服务端就会断开连接。
什么是 SYN 攻击?如何避免 SYN 攻击?
我们都知道 TCP 连接建立是需要三次握手,假设攻击者短时间伪造不同 IP 地址的 SYN
报文,服务端每接收到一个 SYN
报文,就进入SYN_RCVD
状态,但服务端发送出去的 ACK + SYN
报文,无法得到未知 IP 主机的 ACK
应答,久而久之就会占满服务端的半连接队列,使得服务端不能为正常用户服务。
先跟大家说一下,什么是 TCP 半连接和全连接队列。
在 TCP 三次握手的时候,Linux 内核会维护两个队列,分别是:
- 半连接队列,也称 SYN 队列;
- 全连接队列,也称 accept 队列;
我们先来看下 Linux 内核的 SYN
队列(半连接队列)与 Accpet
队列(全连接队列)是如何工作的?
正常流程:
- 当服务端接收到客户端的 SYN 报文时,会创建一个半连接的对象,然后将其加入到内核的「 SYN 队列」;
- 接着发送 SYN + ACK 给客户端,等待客户端回应 ACK 报文;
- 服务端接收到 ACK 报文后,从「 SYN 队列」取出一个半连接对象,然后创建一个新的连接对象放入到「 Accept 队列」;
- 应用通过调用
accpet()
socket 接口,从「 Accept 队列」取出连接对象。
不管是半连接队列还是全连接队列,都有最大长度限制,超过限制时,默认情况都会丢弃报文。
SYN 攻击方式最直接的表现就会把 TCP 半连接队列打满,这样当 TCP 半连接队列满了,后续再在收到 SYN 报文就会丢弃,导致客户端无法和服务端建立连接。
避免 SYN 攻击方式,可以有以下四种方法:
- 调大 netdev_max_backlog;
- 增大 TCP 半连接队列;
- 开启 tcp_syncookies;
- 减少 SYN+ACK 重传次数
方式一:调大 netdev_max_backlog
当网卡接收数据包的速度大于内核处理的速度时,会有一个队列保存这些数据包。控制该队列的最大值如下参数,默认值是 1000,我们要适当调大该参数的值,比如设置为 10000:
net.core.netdev_max_backlog = 10000
方式二:增大 TCP 半连接队列
增大 TCP 半连接队列,要同时增大下面这三个参数:
- 增大 net.ipv4.tcp_max_syn_backlog
- 增大 listen() 函数中的 backlog
- 增大 net.core.somaxconn
具体为什么是三个参数决定 TCP 半连接队列的大小,可以看这篇:可以看这篇:TCP 半连接队列和全连接队列满了会发生什么?又该如何应对?(opens new window)
方式三:开启 net.ipv4.tcp_syncookies
开启 syncookies 功能就可以在不使用 SYN 半连接队列的情况下成功建立连接,相当于绕过了 SYN 半连接来建立连接。
具体过程:
- 当 「 SYN 队列」满之后,后续服务端收到 SYN 包,不会丢弃,而是根据算法,计算出一个
cookie
值; - 将 cookie 值放到第二次握手报文的「序列号」里,然后服务端回第二次握手给客户端;
- 服务端接收到客户端的应答报文时,服务端会检查这个 ACK 包的合法性。如果合法,将该连接对象放入到「 Accept 队列」。
- 最后应用程序通过调用
accpet()
接口,从「 Accept 队列」取出的连接。
可以看到,当开启了 tcp_syncookies 了,即使受到 SYN 攻击而导致 SYN 队列满时,也能保证正常的连接成功建立。
net.ipv4.tcp_syncookies 参数主要有以下三个值:
- 0 值,表示关闭该功能;
- 1 值,表示仅当 SYN 半连接队列放不下时,再启用它;
- 2 值,表示无条件开启功能;
那么在应对 SYN 攻击时,只需要设置为 1 即可。
$ echo 1 > /proc/sys/net/ipv4/tcp_syncookies
方式四:减少 SYN+ACK 重传次数
当服务端受到 SYN 攻击时,就会有大量处于 SYN_REVC 状态的 TCP 连接,处于这个状态的 TCP 会重传 SYN+ACK ,当重传超过次数达到上限后,就会断开连接。
那么针对 SYN 攻击的场景,我们可以减少 SYN-ACK 的重传次数,以加快处于 SYN_REVC 状态的 TCP 连接断开。
SYN-ACK 报文的最大重传次数由 tcp_synack_retries
内核参数决定(默认值是 5 次),比如将 tcp_synack_retries 减少到 2 次:
什么是 SYN 攻击?如何避免 SYN 攻击?
$ echo 2 > /proc/sys/net/ipv4/tcp_synack_retries