计算机系统学习总结
图解系统介绍 小林coding (xiaolincoding.com)
- 计算机系统学习总结
- 硬件结构
- 操作系统结构
- 内存管理
- 进程管理
- 调度算法
硬件结构
CPU执行程序
冯诺依曼模型
运算器、控制器、存储器、输入设备、输出设备,这 5 个部分也被称为冯诺依曼模型。
内存
在计算机数据存储中,存储数据的基本单位是字节(byte),1 字节等于 8 位(8 bit)。每一个字节都对应一个内存地址。
CPU
常见的寄存器种类:
- 通用寄存器,用来存放需要进行运算的数据,比如需要进行加和运算的两个数据。
- 程序计数器,用来存储 CPU 要执行下一条指令「所在的内存地址」,注意不是存储了下一条要执行的指令,此时指令还在内存中,程序计数器只是存储了下一条指令「的地址」。
- 指令寄存器,用来存放当前正在执行的指令,也就是指令本身,指令被执行完成之前,指令都存储在这里。
总线
总线是用于 CPU 和内存以及其他设备之间的通信,总线可分为 3 种:
- 地址总线,用于指定 CPU 将要操作的内存地址;
- 数据总线,用于读写内存的数据;
- 控制总线,用于发送和接收信号,比如中断、设备复位等信号,CPU 收到信号后自然进行响应,这时也需要控制总线;
当 CPU 要读写内存数据的时候,一般需要通过下面这三个总线:
- 首先要通过「地址总线」来指定内存的地址;
- 然后通过「控制总线」控制是读或写命令;
- 最后通过「数据总线」来传输数据;
程序执行的基本过程
在前面,我们知道了程序在图灵机的执行过程,接下来我们来看看程序在冯诺依曼模型上是怎么执行的。
程序实际上是一条一条指令,所以程序的运行过程就是把每一条指令一步一步的执行起来,负责执行指令的就是 CPU 了。
那 CPU 执行程序的过程如下:
- 第一步,CPU 读取「程序计数器」的值,这个值是指令的内存地址,然后 CPU 的「控制单元」操作「地址总线」指定需要访问的内存地址,接着通知内存设备准备数据,数据准备好后通过「数据总线」将指令数据传给 CPU,CPU 收到内存传来的数据后,将这个指令数据存入到「指令寄存器」。
- 第二步,「程序计数器」的值自增,表示指向下一条指令。这个自增的大小,由 CPU 的位宽决定,比如 32 位的 CPU,指令是 4 个字节,需要 4 个内存地址存放,因此「程序计数器」的值会自增 4;
- 第三步,CPU 分析「指令寄存器」中的指令,确定指令的类型和参数,如果是计算类型的指令,就把指令交给「逻辑运算单元」运算;如果是存储类型的指令,则交由「控制单元」执行;
简单总结一下就是,一个程序执行的时候,CPU 会根据程序计数器里的内存地址,从内存里面把需要执行的指令读取到指令寄存器里面执行,然后根据指令长度自增,开始顺序读取下一条指令。
CPU 从程序计数器读取指令、到执行、再到下一条指令,这个过程会不断循环,直到程序执行结束,这个不断循环的过程被称为 CPU 的指令周期。
a = 1 + 2 执行具体过程
知道了基本的程序执行过程后,接下来用 a = 1 + 2
的作为例子,进一步分析该程序在冯诺伊曼模型的执行过程。
CPU 是不认识 a = 1 + 2
这个字符串,这些字符串只是方便我们程序员认识,要想这段程序能跑起来,还需要把整个程序翻译成汇编语言的程序,这个过程称为编译成汇编代码。
针对汇编代码,我们还需要用汇编器翻译成机器码,这些机器码由 0 和 1 组成的机器语言,这一条条机器码,就是一条条的计算机指令,这个才是 CPU 能够真正认识的东西。
下面来看看 a = 1 + 2
在 32 位 CPU 的执行过程。
程序编译过程中,编译器通过分析代码,发现 1 和 2 是数据,于是程序运行时,内存会有个专门的区域来存放这些数据,这个区域就是「数据段」。如下图,数据 1 和 2 的区域位置:
- 数据 1 被存放到 0x200 位置;
- 数据 2 被存放到 0x204 位置;
注意,数据和指令是分开区域存放的,存放指令区域的地方称为「正文段」。
编译器会把 a = 1 + 2
翻译成 4 条指令,存放到正文段中。如图,这 4 条指令被存放到了 0x100 ~ 0x10c 的区域中:
- 0x100 的内容是
load
指令将 0x200 地址中的数据 1 装入到寄存器R0
; - 0x104 的内容是
load
指令将 0x204 地址中的数据 2 装入到寄存器R1
; - 0x108 的内容是
add
指令将寄存器R0
和R1
的数据相加,并把结果存放到寄存器R2
; - 0x10c 的内容是
store
指令将寄存器R2
中的数据存回数据段中的 0x208 地址中,这个地址也就是变量a
内存中的地址;
编译完成后,具体执行程序的时候,程序计数器会被设置为 0x100 地址,然后依次执行这 4 条指令。
上面的例子中,由于是在 32 位 CPU 执行的,因此一条指令是占 32 位大小,所以你会发现每条指令间隔 4 个字节。
而数据的大小是根据你在程序中指定的变量类型,比如 int
类型的数据则占 4 个字节,char
类型的数据则占 1 个字节。
指令
现代大多数 CPU 都使用来流水线的方式来执行指令,所谓的流水线就是把一个任务拆分成多个小任务,于是一条指令通常分为 4 个阶段,称为 4 级流水线,如下图:
四个阶段的具体含义:
- CPU 通过程序计数器读取对应内存地址的指令,这个部分称为 Fetch(取得指令);
- CPU 对指令进行解码,这个部分称为 Decode(指令译码);
- CPU 执行指令,这个部分称为 Execution(执行指令);
- CPU 将计算结果存回寄存器或者将寄存器的值存入内存,这个部分称为 Store(数据回写);
上面这 4 个阶段,我们称为指令周期(Instrution Cycle),CPU 的工作就是一个周期接着一个周期,周而复始。
事实上,不同的阶段其实是由计算机中的不同组件完成的:
- 取指令的阶段,我们的指令是存放在存储器里的,实际上,通过程序计数器和指令寄存器取出指令的过程,是由控制器操作的;
- 指令的译码过程,也是由控制器进行的;
- 指令执行的过程,无论是进行算术操作、逻辑操作,还是进行数据传输、条件分支操作,都是由算术逻辑单元操作的,也就是由运算器处理的。但是如果是一个简单的无条件地址跳转,则是直接在控制器里面完成的,不需要用到运算器。
指令的类型
指令从功能角度划分,可以分为 5 大类:
- 数据传输类型的指令,比如
store/load
是寄存器与内存间数据传输的指令,mov
是将一个内存地址的数据移动到另一个内存地址的指令; - 运算类型的指令,比如加减乘除、位运算、比较大小等等,它们最多只能处理两个寄存器中的数据;
- 跳转类型的指令,通过修改程序计数器的值来达到跳转执行指令的过程,比如编程中常见的
if-else
、switch-case
、函数调用等。 - 信号类型的指令,比如发生中断的指令
trap
; - 闲置类型的指令,比如指令
nop
,执行后 CPU 会空转一个周期;
指令的执行速度
CPU 的硬件参数都会有 GHz
这个参数,比如一个 1 GHz 的 CPU,指的是时钟频率是 1 G,代表着 1 秒会产生 1G 次数的脉冲信号,每一次脉冲信号高低电平的转换就是一个周期,称为时钟周期。
对于 CPU 来说,在一个时钟周期内,CPU 仅能完成一个最基本的动作,时钟频率越高,时钟周期就越短,工作速度也就越快。
一个时钟周期一定能执行完一条指令吗?答案是不一定的,大多数指令不能在一个时钟周期完成,通常需要若干个时钟周期。不同的指令需要的时钟周期是不同的,加法和乘法都对应着一条 CPU 指令,但是乘法需要的时钟周期就要比加法多。
如何让程序跑的更快?
程序执行的时候,耗费的 CPU 时间少就说明程序是快的,对于程序的 CPU 执行时间,我们可以拆解成 CPU 时钟周期数(CPU Cycles)和时钟周期时间(Clock Cycle Time)的乘积。
对于 CPU 时钟周期数我们可以进一步拆解成:「指令数 x 每条指令的平均时钟周期数(Cycles Per Instruction,简称 CPI
)」,于是程序的 CPU 执行时间的公式可变成如下:
因此,要想程序跑的更快,优化这三者即可:
- 指令数,表示执行程序所需要多少条指令,以及哪些指令。这个层面是基本靠编译器来优化,毕竟同样的代码,在不同的编译器,编译出来的计算机指令会有各种不同的表示方式。
- 每条指令的平均时钟周期数 CPI,表示一条指令需要多少个时钟周期数,现代大多数 CPU 通过流水线技术(Pipeline),让一条指令需要的 CPU 时钟周期数尽可能的少;
- 时钟周期时间,表示计算机主频,取决于计算机硬件。有的 CPU 支持超频技术,打开了超频意味着把 CPU 内部的时钟给调快了,于是 CPU 工作速度就变快了,但是也是有代价的,CPU 跑的越快,散热的压力就会越大,CPU 会很容易奔溃。
很多厂商为了跑分而跑分,基本都是在这三个方面入手的哦,特别是超频这一块。
总结
总之,硬件的 64 位和 32 位指的是 CPU 的位宽,软件的 64 位和 32 位指的是指令的位宽。
磁盘
存储器的层次结构
CPU内部 | Computer | Person | | ——– | —— | | CPU | 大脑 | | 寄存器 | 正在思考的内容 | |CPU L1 Cache(数据缓存、指令缓存)|中期记忆| |CPU L2/L3 Cache|长期记忆|
CPU外部 |Computer|Something| |-|—| |内存|书桌| |数据|书| |SSD/hdd|图书馆书架|
寄存器
寄存器的数量通常在几十到几百之间,每个寄存器可以用来存储一定的字节(byte)的数据。比如:
- 32 位 CPU 中大多数寄存器可以存储
4
个字节; - 64 位 CPU 中大多数寄存器可以存储
8
个字节。
CPU Cache
CPU Cache 用的是一种叫 SRAM(Static Random-Access Memory,静态随机存储器) 的芯片。
SRAM 之所以叫「静态」存储器,是因为只要有电,数据就可以保持存在,而一旦断电,数据就会丢失了。
其中,L1 Cache 通常会分为「数据缓存」和「指令缓存」,这意味着数据和指令在 L1 Cache 这一层是分开缓存的,上图中的 index0
也就是数据缓存,而 index1
则是指令缓存,它两的大小通常是一样的。
另外,你也会注意到,L3 Cache 比 L1 Cache 和 L2 Cache 大很多,这是因为 L1 Cache 和 L2 Cache 都是每个 CPU 核心独有的,而 L3 Cache 是多个 CPU 核心共享的。
程序执行时,会先将内存中的数据加载到共享的 L3 Cache 中,再加载到每个核心独有的 L2 Cache,最后进入到最快的 L1 Cache,之后才会被 CPU 读取。它们之间的层级关系,如下图:
内存
内存用的芯片和 CPU Cache 有所不同,它使用的是一种叫作 DRAM (Dynamic Random Access Memory,动态随机存取存储器) 的芯片。
相比 SRAM,DRAM 的密度更高,功耗更低,有更大的容量,而且造价比 SRAM 芯片便宜很多。
DRAM 存储一个 bit 数据,只需要一个晶体管和一个电容就能存储,但是因为数据会被存储在电容里,电容会不断漏电,所以需要「定时刷新」电容,才能保证数据不会被丢失,这就是 DRAM 之所以被称为「动态」存储器的原因,只有不断刷新,数据才能被存储起来。
SSD/HDD
SSD(Solid-state disk) 就是我们常说的固体硬盘,结构和内存类似,但是它相比内存的优点是断电后数据还是存在的,而内存、寄存器、高速缓存断电后数据都会丢失。内存的读写速度比 SSD 大概快 10~1000
倍。
当然,还有一款传统的硬盘,也就是机械硬盘(Hard Disk Drive, HDD),它是通过物理读写的方式来访问数据的,因此它访问速度是非常慢的,它的速度比内存慢 10W
倍左右
存储器层次关系
如何写出让 CPU 跑得更快的代码?
我们知道 CPU 访问内存的速度,比访问 CPU Cache 的速度慢了 100 多倍,所以如果 CPU 所要操作的数据在 CPU Cache 中的话,这样将会带来很大的性能提升。访问的数据在 CPU Cache 中的话,意味着缓存命中,缓存命中率越高的话,代码的性能就会越好,CPU 也就跑的越快。
于是,「如何写出让 CPU 跑得更快的代码?」这个问题,可以改成「如何写出 CPU 缓存命中率高的代码?」。
在前面我也提到, L1 Cache 通常分为「数据缓存」和「指令缓存」,这是因为 CPU 会分别处理数据和指令,比如 1+1=2
这个运算,+
就是指令,会被放在「指令缓存」中,而输入数字 1
则会被放在「数据缓存」里。
因此,我们要分开来看「数据缓存」和「指令缓存」的缓存命中率。
CPU Cache的数据结构和读取过程
我们先简单了解下 CPU Cache 的结构,CPU Cache 是由很多个 Cache Line 组成的,Cache Line 是 CPU 从内存读取数据的基本单位,而 Cache Line 是由各种标志(Tag)+ 数据块(Data Block)组成,你可以在下图清晰的看到:
CPU Cache 的数据是从内存中读取过来的,它是以一小块一小块读取数据的,而不是按照单个数组元素来读取数据的,在 CPU Cache 中的,这样一小块一小块的数据,称为 Cache Line(缓存块)。
事实上,CPU 读取数据的时候,无论数据是否存放到 Cache 中,CPU 都是先访问 Cache,只有当 Cache 中找不到数据时,才会去访问内存,并把内存中的数据读入到 Cache 中,CPU 再从 CPU Cache 读取数据。
这样的访问机制,跟我们使用「内存作为硬盘的缓存」的逻辑是一样的,如果内存有缓存的数据,则直接返回,否则要访问龟速一般的硬盘。
那 CPU 怎么知道要访问的内存数据,是否在 Cache 里?如果在的话,如何找到 Cache 对应的数据呢?我们从最简单、基础的直接映射 Cache(*Direct Mapped Cache*) 说起,来看看整个 CPU Cache 的数据结构和访问逻辑。
前面,我们提到 CPU 访问内存数据时,是一小块一小块数据读取的,具体这一小块数据的大小,取决于 coherency_line_size
的值,一般 64 字节。在内存中,这一块的数据我们称为内存块(*Block*),读取的时候我们要拿到数据所在内存块的地址。
对于直接映射 Cache 采用的策略,就是把内存块的地址始终「映射」在一个 CPU Cache Line(缓存块) 的地址,至于映射关系实现方式,则是使用「取模运算」,取模运算的结果就是内存块地址对应的 CPU Cache Line(缓存块) 的地址。
举个例子,内存共被划分为 32 个内存块,CPU Cache 共有 8 个 CPU Cache Line,假设 CPU 想要访问第 15 号内存块,如果 15 号内存块中的数据已经缓存在 CPU Cache Line 中的话,则是一定映射在 7 号 CPU Cache Line 中,因为 15 % 8
的值是 7。
机智的你肯定发现了,使用取模方式映射的话,就会出现多个内存块对应同一个 CPU Cache Line,比如上面的例子,除了 15 号内存块是映射在 7 号 CPU Cache Line 中,还有 7 号、23 号、31 号内存块都是映射到 7 号 CPU Cache Line 中。
因此,为了区别不同的内存块,在对应的 CPU Cache Line 中我们还会存储一个组标记(Tag)。这个组标记会记录当前 CPU Cache Line 中存储的数据对应的内存块,我们可以用这个组标记来区分不同的内存块。
除了组标记信息外,CPU Cache Line 还有两个信息:
- 一个是,从内存加载过来的实际存放数据(*Data*)。
- 另一个是,有效位(*Valid bit*),它是用来标记对应的 CPU Cache Line 中的数据是否是有效的,如果有效位是 0,无论 CPU Cache Line 中是否有数据,CPU 都会直接访问内存,重新加载数据。
CPU 在从 CPU Cache 读取数据的时候,并不是读取 CPU Cache Line 中的整个数据块,而是读取 CPU 所需要的一个数据片段,这样的数据统称为一个字(*Word*)。那怎么在对应的 CPU Cache Line 中数据块中找到所需的字呢?答案是,需要一个偏移量(Offset)。
因此,一个内存的访问地址,包括组标记、CPU Cache Line 索引、偏移量这三种信息,于是 CPU 就能通过这些信息,在 CPU Cache 中找到缓存的数据。而对于 CPU Cache 里的数据结构,则是由索引 + 有效位 + 组标记 + 数据块组成。
如果内存中的数据已经在 CPU Cache 中了,那 CPU 访问一个内存地址的时候,会经历这 4 个步骤:
- 根据内存地址中索引信息,计算在 CPU Cache 中的索引,也就是找出对应的 CPU Cache Line 的地址;
- 找到对应 CPU Cache Line 后,判断 CPU Cache Line 中的有效位,确认 CPU Cache Line 中数据是否是有效的,如果是无效的,CPU 就会直接访问内存,并重新加载数据,如果数据有效,则往下执行;
- 对比内存地址中组标记和 CPU Cache Line 中的组标记,确认 CPU Cache Line 中的数据是我们要访问的内存数据,如果不是的话,CPU 就会直接访问内存,并重新加载数据,如果是的话,则往下执行;
- 根据内存地址中偏移量信息,从 CPU Cache Line 的数据块中,读取对应的字。
到这里,相信你对直接映射 Cache 有了一定认识,但其实除了直接映射 Cache 之外,还有其他通过内存地址找到 CPU Cache 中的数据的策略,比如全相连 Cache (Fully Associative Cache)、组相连 Cache (Set Associative Cache)等,这几种策策略的数据结构都比较相似,我们理解了直接映射 Cache 的工作方式,其他的策略如果你有兴趣去看,相信很快就能理解的了。
如何提升数据缓存的命中率?
假设要遍历二维数组,有以下两种形式,虽然代码执行结果是一样,但你觉得哪种形式效率最高呢?为什么高呢?
经过测试,形式一 array[i][j]
执行时间比形式二 array[j][i]
快好几倍。
之所以有这么大的差距,是因为二维数组 array
所占用的内存是连续的,比如长度 N
的值是 2
的话,那么内存中的数组元素的布局顺序是这样的:
形式一用 array[i][j]
访问数组元素的顺序,正是和内存中数组元素存放的顺序一致。当 CPU 访问 array[0][0]
时,由于该数据不在 Cache 中,于是会「顺序」把跟随其后的 3 个元素从内存中加载到 CPU Cache,这样当 CPU 访问后面的 3 个数组元素时,就能在 CPU Cache 中成功地找到数据,这意味着缓存命中率很高,缓存命中的数据不需要访问内存,这便大大提高了代码的性能。
而如果用形式二的 array[j][i]
来访问,则访问的顺序就是:
你可以看到,访问的方式跳跃式的,而不是顺序的,那么如果 N 的数值很大,那么操作 array[j][i]
时,是没办法把 array[j+1][i]
也读入到 CPU Cache 中的,既然 array[j+1][i]
没有读取到 CPU Cache,那么就需要从内存读取该数据元素了。很明显,这种不连续性、跳跃式访问数据元素的方式,可能不能充分利用到了 CPU Cache 的特性,从而代码的性能不高。
那访问 array[0][0]
元素时,CPU 具体会一次从内存中加载多少元素到 CPU Cache 呢?这个问题,在前面我们也提到过,这跟 CPU Cache Line 有关,它表示 CPU Cache 一次性能加载数据的大小,可以在 Linux 里通过 coherency_line_size
配置查看 它的大小,通常是 64 个字节。
也就是说,当 CPU 访问内存数据时,如果数据不在 CPU Cache 中,则会一次性会连续加载 64 字节大小的数据到 CPU Cache,那么当访问 array[0][0]
时,由于该元素不足 64 字节,于是就会往后顺序读取 array[0][0]~array[0][15]
到 CPU Cache 中。顺序访问的 array[i][j]
因为利用了这一特点,所以就会比跳跃式访问的 array[j][i]
要快。
因此,遇到这种遍历数组的情况时,按照内存布局顺序访问,将可以有效的利用 CPU Cache 带来的好处,这样我们代码的性能就会得到很大的提升,
如何提升指令缓存的命中率?
提升数据的缓存命中率的方式,是按照内存布局顺序访问,那针对指令的缓存该如何提升呢?
我们以一个例子来看看,有一个元素为 0 到 100 之间随机数字组成的一维数组:
接下来,对这个数组做两个操作:
- 第一个操作,循环遍历数组,把小于 50 的数组元素置为 0;
- 第二个操作,将数组排序;
那么问题来了,你觉得先遍历再排序速度快,还是先排序再遍历速度快呢?
在回答这个问题之前,我们先了解 CPU 的分支预测器。对于 if 条件语句,意味着此时至少可以选择跳转到两段不同的指令执行,也就是 if 还是 else 中的指令。那么,如果分支预测可以预测到接下来要执行 if 里的指令,还是 else 指令的话,就可以「提前」把这些指令放在指令缓存中,这样 CPU 可以直接从 Cache 读取到指令,于是执行速度就会很快。
当数组中的元素是随机的,分支预测就无法有效工作,而当数组元素都是是顺序的,分支预测器会动态地根据历史命中数据对未来进行预测,这样命中率就会很高。
因此,先排序再遍历速度会更快,这是因为排序之后,数字是从小到大的,那么前几次循环命中 if < 50
的次数会比较多,于是分支预测就会缓存 if
里的 array[i] = 0
指令到 Cache 中,后续 CPU 执行该指令就只需要从 Cache 读取就好了。
如果你肯定代码中的 if
中的表达式判断为 true
的概率比较高,我们可以使用显示分支预测工具,比如在 C/C++ 语言中编译器提供了 likely
和 unlikely
这两种宏,如果 if
条件为 ture
的概率大,则可以用 likely
宏把 if
里的表达式包裹起来,反之用 unlikely
宏。
实际上,CPU 自身的动态分支预测已经是比较准的了,所以只有当非常确信 CPU 预测的不准,且能够知道实际的概率情况时,才建议使用这两种宏。
如何提升多核 CPU 的缓存命中率?
在单核 CPU,虽然只能执行一个线程,但是操作系统给每个线程分配了一个时间片,时间片用完了,就调度下一个线程,于是各个线程就按时间片交替地占用 CPU,从宏观上看起来各个线程同时在执行。
而现代 CPU 都是多核心的,线程可能在不同 CPU 核心来回切换执行,这对 CPU Cache 不是有利的,虽然 L3 Cache 是多核心之间共享的,但是 L1 和 L2 Cache 都是每个核心独有的,如果一个线程在不同核心来回切换,各个核心的缓存命中率就会受到影响,相反如果线程都在同一个核心上执行,那么其数据的 L1 和 L2 Cache 的缓存命中率可以得到有效提高,缓存命中率高就意味着 CPU 可以减少访问 内存的频率。
当有多个同时执行「计算密集型」的线程,为了防止因为切换到不同的核心,而导致缓存命中率下降的问题,我们可以把线程绑定在某一个 CPU 核心上,这样性能可以得到非常可观的提升。
在 Linux 上提供了 sched_setaffinity
方法,来实现将线程绑定到某个 CPU 核心这一功能。
CPU缓存一致性
CPU Cache数据写入
事实上,数据不光是只有读操作,还有写操作,那么如果数据写入 Cache 之后,内存与 Cache 相对应的数据将会不同,这种情况下 Cache 和内存数据都不一致了,于是我们肯定是要把 Cache 中的数据同步到内存里的。
问题来了,那在什么时机才把 Cache 中的数据写回到内存呢?为了应对这个问题,下面介绍两种针对写入数据的方法:
- 写直达(Write Through)
- 写回(Write Back)
写直达
保持内存与 Cache 一致性最简单的方式是,把数据同时写入内存和 Cache 中,这种方法称为写直达(Write Through)。
在这个方法里,写入前会先判断数据是否已经在 CPU Cache 里面了:
- 如果数据已经在 Cache 里面,先将数据更新到 Cache 里面,再写入到内存里面;
- 如果数据没有在 Cache 里面,就直接把数据更新到内存里面。
写直达法很直观,也很简单,但是问题明显,无论数据在不在 Cache 里面,每次写操作都会写回到内存,这样写操作将会花费大量的时间,无疑性能会受到很大的影响。
写回
既然写直达由于每次写操作都会把数据写回到内存,而导致影响性能,于是为了要减少数据写回内存的频率,就出现了写回(Write Back)的方法。
在写回机制中,当发生写操作时,新的数据仅仅被写入 Cache Block 里,只有当修改过的 Cache Block「被替换」时才需要写到内存中,减少了数据写回内存的频率,这样便可以提高系统的性能。
那具体如何做到的呢?下面来详细说一下:
- 如果当发生写操作时,数据已经在 CPU Cache 里的话,则把数据更新到 CPU Cache 里,同时标记 CPU Cache 里的这个 Cache Block 为脏(Dirty)的,这个脏的标记代表这个时候,我们 CPU Cache 里面的这个 Cache Block 的数据和内存是不一致的,这种情况是不用把数据写到内存里的;
- 如果当发生写操作时,数据所对应的 Cache Block 里存放的是「别的内存地址的数据」的话,就要检查这个 Cache Block 里的数据有没有被标记为脏的:
- 如果是脏的话,我们就要把这个 Cache Block 里的数据写回到内存,然后再把当前要写入的数据,先从内存读入到 Cache Block 里(注意,这一步不是没用的,具体为什么要这一步,可以看这个「回答 (opens new window)」),然后再把当前要写入的数据写入到 Cache Block,最后也把它标记为脏的;
- 如果不是脏的话,把当前要写入的数据先从内存读入到 Cache Block 里,接着将数据写入到这个 Cache Block 里,然后再把这个 Cache Block 标记为脏的就好了。
可以发现写回这个方法,在把数据写入到 Cache 的时候,只有在缓存不命中,同时数据对应的 Cache 中的 Cache Block 为脏标记的情况下,才会将数据写到内存中,而在缓存命中的情况下,则在写入后 Cache 后,只需把该数据对应的 Cache Block 标记为脏即可,而不用写到内存里。
这样的好处是,如果我们大量的操作都能够命中缓存,那么大部分时间里 CPU 都不需要读写内存,自然性能相比写直达会高很多。
为什么缓存没命中时,还要定位 Cache Block?这是因为此时是要判断数据即将写入到 cache block 里的位置,是否被「其他数据」占用了此位置,如果这个「其他数据」是脏数据,那么就要帮忙把它写回到内存。
CPU 缓存与内存使用「写回」机制的流程图如下,左半部分就是读操作的流程,右半部分就是写操作的流程,也就是我们上面讲的内容。
缓存的一致性问题
现在 CPU 都是多核的,由于 L1/L2 Cache 是多个核心各自独有的,那么会带来多核心的缓存一致性(*Cache Coherence*) 的问题,如果不能保证缓存一致性的问题,就可能造成结果错误。
那缓存一致性的问题具体是怎么发生的呢?我们以一个含有两个核心的 CPU 作为例子看一看。
假设 A 号核心和 B 号核心同时运行两个线程,都操作共同的变量 i(初始值为 0 )。
这时如果 A 号核心执行了 i++
语句的时候,为了考虑性能,使用了我们前面所说的写回策略,先把值为 1
的执行结果写入到 L1/L2 Cache 中,然后把 L1/L2 Cache 中对应的 Block 标记为脏的,这个时候数据其实没有被同步到内存中的,因为写回策略,只有在 A 号核心中的这个 Cache Block 要被替换的时候,数据才会写入到内存里。
如果这时旁边的 B 号核心尝试从内存读取 i 变量的值,则读到的将会是错误的值,因为刚才 A 号核心更新 i 值还没写入到内存中,内存中的值还依然是 0。这个就是所谓的缓存一致性问题,A 号核心和 B 号核心的缓存,在这个时候是不一致,从而会导致执行结果的错误。
那么,要解决这一问题,就需要一种机制,来同步两个不同核心里面的缓存数据。要实现的这个机制的话,要保证做到下面这 2 点:
- 第一点,某个 CPU 核心里的 Cache 数据更新时,必须要传播到其他核心的 Cache,这个称为写传播(*Write Propagation*);
- 第二点,某个 CPU 核心里对数据的操作顺序,必须在其他核心看起来顺序是一样的,这个称为事务的串行化(*Transaction Serialization*)。
第一点写传播很容易就理解,当某个核心在 Cache 更新了数据,就需要同步到其他核心的 Cache 里。而对于第二点事务的串行化,我们举个例子来理解它。
假设我们有一个含有 4 个核心的 CPU,这 4 个核心都操作共同的变量 i(初始值为 0 )。A 号核心先把 i 值变为 100,而此时同一时间,B 号核心先把 i 值变为 200,这里两个修改,都会「传播」到 C 和 D 号核心。
那么问题就来了,C 号核心先收到了 A 号核心更新数据的事件,再收到 B 号核心更新数据的事件,因此 C 号核心看到的变量 i 是先变成 100,后变成 200。
而如果 D 号核心收到的事件是反过来的,则 D 号核心看到的是变量 i 先变成 200,再变成 100,虽然是做到了写传播,但是各个 Cache 里面的数据还是不一致的。
所以,我们要保证 C 号核心和 D 号核心都能看到相同顺序的数据变化,比如变量 i 都是先变成 100,再变成 200,这样的过程就是事务的串行化。
要实现事务串行化,要做到 2 点:
- CPU 核心对于 Cache 中数据的操作,需要同步给其他 CPU 核心;
- 要引入「锁」的概念,如果两个 CPU 核心里有相同数据的 Cache,那么对于这个 Cache 数据的更新,只有拿到了「锁」,才能进行对应的数据更新。
那接下来我们看看,写传播和事务串行化具体是用什么技术实现的。
总线嗅探
写传播的原则就是当某个 CPU 核心更新了 Cache 中的数据,要把该事件广播通知到其他核心。最常见实现的方式是总线嗅探(*Bus Snooping*)。
我还是以前面的 i 变量例子来说明总线嗅探的工作机制,当 A 号 CPU 核心修改了 L1 Cache 中 i 变量的值,通过总线把这个事件广播通知给其他所有的核心,然后每个 CPU 核心都会监听总线上的广播事件,并检查是否有相同的数据在自己的 L1 Cache 里面,如果 B 号 CPU 核心的 L1 Cache 中有该数据,那么也需要把该数据更新到自己的 L1 Cache。
可以发现,总线嗅探方法很简单, CPU 需要每时每刻监听总线上的一切活动,但是不管别的核心的 Cache 是否缓存相同的数据,都需要发出一个广播事件,这无疑会加重总线的负载。
另外,总线嗅探只是保证了某个 CPU 核心的 Cache 更新数据这个事件能被其他 CPU 核心知道,但是并不能保证事务串行化。
于是,有一个协议基于总线嗅探机制实现了事务串行化,也用状态机机制降低了总线带宽压力,这个协议就是 MESI 协议,这个协议就做到了 CPU 缓存一致性。
软中断
那 Linux 系统为了解决中断处理程序执行过长和中断丢失的问题,将中断过程分成了两个阶段,分别是「上半部和下半部分」。
- 上半部用来快速处理中断,一般会暂时关闭中断请求,主要负责处理跟硬件紧密相关或者时间敏感的事情。
- 下半部用来延迟处理上半部未完成的工作,一般以「内核线程」的方式运行。
中断处理程序的上部分和下半部可以理解为:
- 上半部直接处理硬件请求,也就是硬中断,主要是负责耗时短的工作,特点是快速执行;
- 下半部是由内核触发,也就说软中断,主要是负责上半部未完成的工作,通常都是耗时比较长的事情,特点是延迟执行;
不过,软中断不只是包括硬件设备中断处理程序的下半部,一些内核自定义事件也属于软中断,比如内核调度等、RCU 锁(内核里常用的一种锁)等。
操作系统结构
内核
计算机是由各种外部硬件设备组成的,比如内存、cpu、硬盘等,如果每个应用都要和这些硬件设备对接通信协议,那这样太累了,所以这个中间人就由内核来负责,让内核作为应用连接硬件设备的桥梁,应用程序只需关心与内核交互,不用关心硬件的细节。
内核有哪些能力呢?
现代操作系统,内核一般会提供 4 个基本能力:
- 管理进程、线程,决定哪个进程、线程使用 CPU,也就是进程调度的能力;
- 管理内存,决定内存的分配和回收,也就是内存管理的能力;
- 管理硬件设备,为进程与硬件设备之间提供通信能力,也就是硬件通信能力;
- 提供系统调用,如果应用程序要运行更高权限运行的服务,那么就需要有系统调用,它是用户程序与操作系统之间的接口。
计算机是由各种外部硬件设备组成的,比如内存、cpu、硬盘等,如果每个应用都要和这些硬件设备对接通信协议,那这样太累了,所以这个中间人就由内核来负责,让内核作为应用连接硬件设备的桥梁,应用程序只需关心与内核交互,不用关心硬件的细节。
内核有哪些能力呢?
现代操作系统,内核一般会提供 4 个基本能力:
- 管理进程、线程,决定哪个进程、线程使用 CPU,也就是进程调度的能力;
- 管理内存,决定内存的分配和回收,也就是内存管理的能力;
- 管理硬件设备,为进程与硬件设备之间提供通信能力,也就是硬件通信能力;
- 提供系统调用,如果应用程序要运行更高权限运行的服务,那么就需要有系统调用,它是用户程序与操作系统之间的接口。
内核是怎么工作的?
内核具有很高的权限,可以控制 cpu、内存、硬盘等硬件,而应用程序具有的权限很小,因此大多数操作系统,把内存分成了两个区域:
- 内核空间,这个内存空间只有内核程序可以访问;
- 用户空间,这个内存空间专门给应用程序使用;
用户空间的代码只能访问一个局部的内存空间,而内核空间的代码可以访问所有内存空间。因此,当程序使用用户空间时,我们常说该程序在用户态执行,而当程序使内核空间时,程序则在内核态执行。
应用程序如果需要进入内核空间,就需要通过系统调用,下面来看看系统调用的过程:
内核程序执行在内核态,用户程序执行在用户态。当应用程序使用系统调用时,会产生一个中断。发生中断后, CPU 会中断当前在执行的用户程序,转而跳转到中断处理程序,也就是开始执行内核程序。内核处理完后,主动触发中断,把 CPU 执行权限交回给用户程序,回到用户态继续工作。
总结
对于内核的架构一般有这三种类型:
- 宏内核,包含多个模块,整个内核像一个完整的程序;
- 微内核,有一个最小版本的内核,一些模块和服务则由用户态管理;
- 混合内核,是宏内核和微内核的结合体,内核中抽象出了微内核的概念,也就是内核中会有一个小型的内核,其他模块就在这个基础上搭建,整个内核是个完整的程序;
Linux 的内核设计是采用了宏内核,Window 的内核设计则是采用了混合内核。
这两个操作系统的可执行文件格式也不一样, Linux 可执行文件格式叫作 ELF,Windows 可执行文件格式叫作 PE。
内存管理
为什么要有虚拟内存
虚拟内存
我们可以把进程所使用的地址「隔离」开来,即让操作系统为每个进程分配独立的一套「虚拟地址」,人人都有,大家自己玩自己的地址就行,互不干涉。但是有个前提每个进程都不能访问物理地址,至于虚拟地址最终怎么落到物理内存里,对进程来说是透明的,操作系统已经把这些都安排的明明白白了。
操作系统会提供一种机制,将不同进程的虚拟地址和不同内存的物理地址映射起来。
如果程序要访问虚拟地址的时候,由操作系统转换成不同的物理地址,这样不同的进程运行的时候,写入的是不同的物理地址,这样就不会冲突了。
于是,这里就引出了两种地址的概念:
- 我们程序所使用的内存地址叫做虚拟内存地址(Virtual Memory Address)
- 实际存在硬件里面的空间地址叫物理内存地址(Physical Memory Address)。
操作系统引入了虚拟内存,进程持有的虚拟地址会通过 CPU 芯片中的内存管理单元(MMU)的映射关系,来转换变成物理地址,然后再通过物理地址访问内存,如下图所示:
操作系统是如何管理虚拟地址与物理地址之间的关系?
主要有两种方式,分别是内存分段和内存分页,分段是比较早提出的,我们先来看看内存分段。
内存分段
段选择因子和段内偏移量:
- 段选择子就保存在段寄存器里面。段选择子里面最重要的是段号,用作段表的索引。段表里面保存的是这个段的基地址、段的界限和特权等级等。
- 虚拟地址中的段内偏移量应该位于 0 和段界限之间,如果段内偏移量是合法的,就将段基地址加上段内偏移量得到物理内存地址。
在上面,知道了虚拟地址是通过段表与物理地址进行映射的,分段机制会把程序的虚拟地址分成 4 个段,每个段在段表中有一个项,在这一项找到段的基地址,再加上偏移量,于是就能找到物理内存中的地址,如下图:
如果要访问段 3 中偏移量 500 的虚拟地址,我们可以计算出物理地址为,段 3 基地址 7000 + 偏移量 500 = 7500。
分段的办法很好,解决了程序本身不需要关心具体的物理内存地址的问题,但它也有一些不足之处:
- 第一个就是内存碎片的问题。
- 第二个就是内存交换的效率低的问题。
接下来,说说为什么会有这两个问题。
我们先来看看,分段为什么会产生内存碎片的问题?
我们来看看这样一个例子。假设有 1G 的物理内存,用户执行了多个程序,其中:
- 游戏占用了 512MB 内存
- 浏览器占用了 128MB 内存
- 音乐占用了 256 MB 内存。
这个时候,如果我们关闭了浏览器,则空闲内存还有 1024 - 512 - 256 = 256MB。
如果这个 256MB 不是连续的,被分成了两段 128 MB 内存,这就会导致没有空间再打开一个 200MB 的程序。
内存分段会出现内存碎片吗?
内存碎片主要分为,内部内存碎片和外部内存碎片。
内存分段管理可以做到段根据实际需求分配内存,所以有多少需求就分配多大的段,所以不会出现内部内存碎片。
但是由于每个段的长度不固定,所以多个段未必能恰好使用所有的内存空间,会产生了多个不连续的小物理内存,导致新的程序无法被装载,所以会出现外部内存碎片的问题。
解决「外部内存碎片」的问题就是内存交换。
可以把音乐程序占用的那 256MB 内存写到硬盘上,然后再从硬盘上读回来到内存里。不过再读回的时候,我们不能装载回原来的位置,而是紧紧跟着那已经被占用了的 512MB 内存后面。这样就能空缺出连续的 256MB 空间,于是新的 200MB 程序就可以装载进来。
这个内存交换空间,在 Linux 系统里,也就是我们常看到的 Swap 空间,这块空间是从硬盘划分出来的,用于内存与硬盘的空间交换。
再来看看,分段为什么会导致内存交换效率低的问题?
对于多进程的系统来说,用分段的方式,外部内存碎片是很容易产生的,产生了外部内存碎片,那不得不重新 Swap
内存区域,这个过程会产生性能瓶颈。
因为硬盘的访问速度要比内存慢太多了,每一次内存交换,我们都需要把一大段连续的内存数据写到硬盘上。
所以,如果内存交换的时候,交换的是一个占内存空间很大的程序,这样整个机器都会显得卡顿。
为了解决内存分段的「外部内存碎片和内存交换效率低」的问题,就出现了内存分页。
内存分页
分段的好处就是能产生连续的内存空间,但是会出现「外部内存碎片和内存交换的空间太大」的问题。
要解决这些问题,那么就要想出能少出现一些内存碎片的办法。另外,当需要进行内存交换的时候,让需要交换写入或者从磁盘装载的数据更少一点,这样就可以解决问题了。这个办法,也就是内存分页(Paging)。
分页是把整个虚拟和物理内存空间切成一段段固定尺寸的大小。这样一个连续并且尺寸固定的内存空间,我们叫页(Page)。在 Linux 下,每一页的大小为 4KB
。
虚拟地址与物理地址之间通过页表来映射,如下图:
页表是存储在内存里的,内存管理单元 (MMU)就做将虚拟内存地址转换成物理地址的工作。
而当进程访问的虚拟地址在页表中查不到时,系统会产生一个缺页异常,进入系统内核空间分配物理内存、更新进程页表,最后再返回用户空间,恢复进程的运行。
分页是怎么解决分段的「外部内存碎片和内存交换效率低」的问题?
内存分页由于内存空间都是预先划分好的,也就不会像内存分段一样,在段与段之间会产生间隙非常小的内存,这正是分段会产生外部内存碎片的原因。而采用了分页,页与页之间是紧密排列的,所以不会有外部碎片。
但是,因为内存分页机制分配内存的最小单位是一页,即使程序不足一页大小,我们最少只能分配一个页,所以页内会出现内存浪费,所以针对内存分页机制会有内部内存碎片的现象。
如果内存空间不够,操作系统会把其他正在运行的进程中的「最近没被使用」的内存页面给释放掉,也就是暂时写在硬盘上,称为换出(Swap Out)。一旦需要的时候,再加载进来,称为换入(Swap In)。所以,一次性写入磁盘的也只有少数的一个页或者几个页,不会花太多时间,内存交换的效率就相对比较高。
更进一步地,分页的方式使得我们在加载程序的时候,不再需要一次性都把程序加载到物理内存中。我们完全可以在进行虚拟内存和物理内存的页之间的映射之后,并不真的把页加载到物理内存里,而是只有在程序运行中,需要用到对应虚拟内存页里面的指令和数据时,再加载到物理内存里面去。
分页机制下,虚拟地址和物理地址是如何映射的?
在分页机制下,虚拟地址分为两部分,页号和页内偏移。页号作为页表的索引,页表包含物理页每页所在物理内存的基地址,这个基地址与页内偏移的组合就形成了物理内存地址,见下图。
总结一下,对于一个内存地址转换,其实就是这样三个步骤:
- 把虚拟内存地址,切分成页号和偏移量;
- 根据页号,从页表里面,查询对应的物理页号;
- 直接拿物理页号,加上前面的偏移量,就得到了物理内存地址。
下面举个例子,虚拟内存中的页通过页表映射为了物理内存中的页,如下图:
这看起来似乎没什么毛病,但是放到实际中操作系统,这种简单的分页是肯定是会有问题的。
简单的分页有什么缺陷吗?
有空间上的缺陷。
因为操作系统是可以同时运行非常多的进程的,那这不就意味着页表会非常的庞大。
在 32 位的环境下,虚拟地址空间共有 4GB,假设一个页的大小是 4KB(2^12),那么就需要大约 100 万 (2^20) 个页,每个「页表项」需要 4 个字节大小来存储,那么整个 4GB 空间的映射就需要有 4MB
的内存来存储页表。
这 4MB 大小的页表,看起来也不是很大。但是要知道每个进程都是有自己的虚拟地址空间的,也就说都有自己的页表。
那么,100
个进程的话,就需要 400MB
的内存来存储页表,这是非常大的内存了,更别说 64 位的环境了。
多级页表
要解决上面的问题,就需要采用一种叫作多级页表(Multi-Level Page Table)的解决方案。
在前面我们知道了,对于单页表的实现方式,在 32 位和页大小 4KB
的环境下,一个进程的页表需要装下 100 多万个「页表项」,并且每个页表项是占用 4 字节大小的,于是相当于每个页表需占用 4MB 大小的空间。
我们把这个 100 多万个「页表项」的单级页表再分页,将页表(一级页表)分为 1024
个页表(二级页表),每个表(二级页表)中包含 1024
个「页表项」,形成二级分页。如下图所示:
你可能会问,分了二级表,映射 4GB 地址空间就需要 4KB(一级页表)+ 4MB(二级页表)的内存,这样占用空间不是更大了吗?
当然如果 4GB 的虚拟地址全部都映射到了物理内存上的话,二级分页占用空间确实是更大了,但是,我们往往不会为一个进程分配那么多内存。
其实我们应该换个角度来看问题,还记得计算机组成原理里面无处不在的局部性原理么?
每个进程都有 4GB 的虚拟地址空间,而显然对于大多数程序来说,其使用到的空间远未达到 4GB,因为会存在部分对应的页表项都是空的,根本没有分配,对于已分配的页表项,如果存在最近一定时间未访问的页表,在物理内存紧张的情况下,操作系统会将页面换出到硬盘,也就是说不会占用物理内存。
如果使用了二级分页,一级页表就可以覆盖整个 4GB 虚拟地址空间,但如果某个一级页表的页表项没有被用到,也就不需要创建这个页表项对应的二级页表了,即可以在需要时才创建二级页表。做个简单的计算,假设只有 20% 的一级页表项被用到了,那么页表占用的内存空间就只有 4KB(一级页表) + 20% * 4MB(二级页表)= 0.804MB
,这对比单级页表的 4MB
是不是一个巨大的节约?
那么为什么不分级的页表就做不到这样节约内存呢?
我们从页表的性质来看,保存在内存中的页表承担的职责是将虚拟地址翻译成物理地址。假如虚拟地址在页表中找不到对应的页表项,计算机系统就不能工作了。所以页表一定要覆盖全部虚拟地址空间,不分级的页表就需要有 100 多万个页表项来映射,而二级分页则只需要 1024 个页表项(此时一级页表覆盖到了全部虚拟地址空间,二级页表在需要时创建)。
我们把二级分页再推广到多级页表,就会发现页表占用的内存空间更少了,这一切都要归功于对局部性原理的充分应用。
对于 64 位的系统,两级分页肯定不够了,就变成了四级目录,分别是:
- 全局页目录项 PGD(Page Global Directory);
- 上层页目录项 PUD(Page Upper Directory);
- 中间页目录项 PMD(Page Middle Directory);
- 页表项 PTE(Page Table Entry);
TLB
多级页表虽然解决了空间上的问题,但是虚拟地址到物理地址的转换就多了几道转换的工序,这显然就降低了这俩地址转换的速度,也就是带来了时间上的开销。
程序是有局部性的,即在一段时间内,整个程序的执行仅限于程序中的某一部分。相应地,执行所访问的存储空间也局限于某个内存区域。
我们就可以利用这一特性,把最常访问的几个页表项存储到访问速度更快的硬件,于是计算机科学家们,就在 CPU 芯片中,加入了一个专门存放程序最常访问的页表项的 Cache,这个 Cache 就是 TLB(Translation Lookaside Buffer) ,通常称为页表缓存、转址旁路缓存、快表等。
在 CPU 芯片里面,封装了内存管理单元(Memory Management Unit)芯片,它用来完成地址转换和 TLB 的访问与交互。
有了 TLB 后,那么 CPU 在寻址时,会先查 TLB,如果没找到,才会继续查常规的页表。
TLB 的命中率其实是很高的,因为程序最常访问的页就那么几个。
段页式内存管理
内存分段和内存分页并不是对立的,它们是可以组合起来在同一个系统中使用的,那么组合起来后,通常称为段页式内存管理。
段页式内存管理实现的方式:
- 先将程序划分为多个有逻辑意义的段,也就是前面提到的分段机制;
- 接着再把每个段划分为多个页,也就是对分段划分出来的连续空间,再划分固定大小的页;
这样,地址结构就由段号、段内页号和页内位移三部分组成。
用于段页式地址变换的数据结构是每一个程序一张段表,每个段又建立一张页表,段表中的地址是页表的起始地址,而页表中的地址则为某页的物理页号,如图所示:
段页式地址变换中要得到物理地址须经过三次内存访问:
- 第一次访问段表,得到页表起始地址;
- 第二次访问页表,得到物理页号;
- 第三次将物理页号与页内位移组合,得到物理地址。
可用软、硬件相结合的方法实现段页式地址变换,这样虽然增加了硬件成本和系统开销,但提高了内存的利用率。
总结
为了在多进程环境下,使得进程之间的内存地址不受影响,相互隔离,于是操作系统就为每个进程独立分配一套虚拟地址空间,每个程序只关心自己的虚拟地址就可以,实际上大家的虚拟地址都是一样的,但分布到物理地址内存是不一样的。作为程序,也不用关心物理地址的事情。
每个进程都有自己的虚拟空间,而物理内存只有一个,所以当启用了大量的进程,物理内存必然会很紧张,于是操作系统会通过内存交换技术,把不常使用的内存暂时存放到硬盘(换出),在需要的时候再装载回物理内存(换入)。
那既然有了虚拟地址空间,那必然要把虚拟地址「映射」到物理地址,这个事情通常由操作系统来维护。
那么对于虚拟地址与物理地址的映射关系,可以有分段和分页的方式,同时两者结合都是可以的。
内存分段是根据程序的逻辑角度,分成了栈段、堆段、数据段、代码段等,这样可以分离出不同属性的段,同时是一块连续的空间。但是每个段的大小都不是统一的,这就会导致外部内存碎片和内存交换效率低的问题。
于是,就出现了内存分页,把虚拟空间和物理空间分成大小固定的页,如在 Linux 系统中,每一页的大小为 4KB
。由于分了页后,就不会产生细小的内存碎片,解决了内存分段的外部内存碎片问题。同时在内存交换的时候,写入硬盘也就一个页或几个页,这就大大提高了内存交换的效率。
再来,为了解决简单分页产生的页表过大的问题,就有了多级页表,它解决了空间上的问题,但这就会导致 CPU 在寻址的过程中,需要有很多层表参与,加大了时间上的开销。于是根据程序的局部性原理,在 CPU 芯片中加入了 TLB,负责缓存最近常被访问的页表项,大大提高了地址的转换速度。
Linux 系统主要采用了分页管理,但是由于 Intel 处理器的发展史,Linux 系统无法避免分段管理。于是 Linux 就把所有段的基地址设为 0
,也就意味着所有程序的地址空间都是线性地址空间(虚拟地址),相当于屏蔽了 CPU 逻辑地址的概念,所以段只被用于访问控制和内存保护。
另外,Linux 系统中虚拟空间分布可分为用户态和内核态两部分,其中用户态的分布:代码段、全局变量、BSS、函数栈、堆内存、映射区。
最后,说下虚拟内存有什么作用?
- 第一,虚拟内存可以使得进程对运行内存超过物理内存大小,因为程序运行符合局部性原理,CPU 访问内存会有很明显的重复访问的倾向性,对于那些没有被经常使用到的内存,我们可以把它换出到物理内存之外,比如硬盘上的 swap 区域。
- 第二,由于每个进程都有自己的页表,所以每个进程的虚拟内存空间就是相互独立的。进程也没有办法访问其他进程的页表,所以这些页表是私有的,这就解决了多进程之间地址冲突的问题。
- 第三,页表里的页表项中除了物理地址之外,还有一些标记属性的比特,比如控制一个页的读写权限,标记该页是否存在等。在内存访问方面,操作系统提供了更好的安全性。
内存满了,会发生什么
先来说说第一个问题:虚拟内存有什么作用?
- 第一,虚拟内存可以使得进程对运行内存超过物理内存大小,因为程序运行符合局部性原理,CPU 访问内存会有很明显的重复访问的倾向性,对于那些没有被经常使用到的内存,我们可以把它换出到物理内存之外,比如硬盘上的 swap 区域。
- 第二,由于每个进程都有自己的页表,所以每个进程的虚拟内存空间就是相互独立的。进程也没有办法访问其他进程的页表,所以这些页表是私有的,这就解决了多进程之间地址冲突的问题。
- 第三,页表里的页表项中除了物理地址之外,还有一些标记属性的比特,比如控制一个页的读写权限,标记该页是否存在等。在内存访问方面,操作系统提供了更好的安全性。
然后今天主要是聊聊第二个问题,「系统内存紧张时,会发生什么?」
内存分配的过程是怎样的?
应用程序通过 malloc 函数申请内存的时候,实际上申请的是虚拟内存,此时并不会分配物理内存。
当应用程序读写了这块虚拟内存,CPU 就会去访问这个虚拟内存, 这时会发现这个虚拟内存没有映射到物理内存, CPU 就会产生缺页中断,进程会从用户态切换到内核态,并将缺页中断交给内核的 Page Fault Handler (缺页中断函数)处理。
缺页中断处理函数会看是否有空闲的物理内存,如果有,就直接分配物理内存,并建立虚拟内存与物理内存之间的映射关系。
如果没有空闲的物理内存,那么内核就会开始进行回收内存的工作,回收的方式主要是两种:直接内存回收和后台内存回收。
- 后台内存回收(kswapd):在物理内存紧张的时候,会唤醒 kswapd 内核线程来回收内存,这个回收内存的过程异步的,不会阻塞进程的执行。
- 直接内存回收(direct reclaim):如果后台异步回收跟不上进程内存申请的速度,就会开始直接回收,这个回收内存的过程是同步的,会阻塞进程的执行。
如果直接内存回收后,空闲的物理内存仍然无法满足此次物理内存的申请,那么内核就会放最后的大招了 ——触发 OOM (Out of Memory)机制。
OOM Killer 机制会根据算法选择一个占用物理内存较高的进程,然后将其杀死,以便释放内存资源,如果物理内存依然不足,OOM Killer 会继续杀死占用物理内存较高的进程,直到释放足够的内存位置。
申请物理内存的过程如下图:
哪些内存可以被回收
系统内存紧张的时候,就会进行回收内存的工作,那具体哪些内存是可以被回收的呢?
主要有两类内存可以被回收,而且它们的回收方式也不同。
- 文件页(File-backed Page):内核缓存的磁盘数据(Buffer)和内核缓存的文件数据(Cache)都叫作文件页。大部分文件页,都可以直接释放内存,以后有需要时,再从磁盘重新读取就可以了。而那些被应用程序修改过,并且暂时还没写入磁盘的数据(也就是脏页),就得先写入磁盘,然后才能进行内存释放。所以,回收干净页的方式是直接释放内存,回收脏页的方式是先写回磁盘后再释放内存。
- 匿名页(Anonymous Page):这部分内存没有实际载体,不像文件缓存有硬盘文件这样一个载体,比如堆、栈数据等。这部分内存很可能还要再次被访问,所以不能直接释放内存,它们回收的方式是通过 Linux 的 Swap 机制,Swap 会把不常访问的内存先写到磁盘中,然后释放这些内存,给其他更需要的进程使用。再次访问这些内存时,重新从磁盘读入内存就可以了。
文件页和匿名页的回收都是基于 LRU 算法,也就是优先回收不常访问的内存。LRU 回收算法,实际上维护着 active 和 inactive 两个双向链表,其中:
- active_list 活跃内存页链表,这里存放的是最近被访问过(活跃)的内存页;
- inactive_list 不活跃内存页链表,这里存放的是很少被访问(非活跃)的内存页;
越接近链表尾部,就表示内存页越不常访问。这样,在回收内存时,系统就可以根据活跃程度,优先回收不活跃的内存。
活跃和非活跃的内存页,按照类型的不同,又分别分为文件页和匿名页。可以从 /proc/meminfo 中,查询它们的大小,比如:
# grep表示只保留包含active的指标(忽略大小写)
# sort表示按照字母顺序排序
[root@xiaolin ~]# cat /proc/meminfo | grep -i active | sort
Active: 901456 kB
Active(anon): 227252 kB
Active(file): 674204 kB
Inactive: 226232 kB
Inactive(anon): 41948 kB
Inactive(file): 184284 kB
回收内存带来的性能影响
在前面我们知道了回收内存有两种方式。
- 一种是后台内存回收,也就是唤醒 kswapd 内核线程,这种方式是异步回收的,不会阻塞进程。
- 一种是直接内存回收,这种方式是同步回收的,会阻塞进程,这样就会造成很长时间的延迟,以及系统的 CPU 利用率会升高,最终引起系统负荷飙高。
可被回收的内存类型有文件页和匿名页:
- 文件页的回收:对于干净页是直接释放内存,这个操作不会影响性能,而对于脏页会先写回到磁盘再释放内存,这个操作会发生磁盘 I/O 的,这个操作是会影响系统性能的。
- 匿名页的回收:如果开启了 Swap 机制,那么 Swap 机制会将不常访问的匿名页换出到磁盘中,下次访问时,再从磁盘换入到内存中,这个操作是会影响系统性能的。
可以看到,回收内存的操作基本都会发生磁盘 I/O 的,如果回收内存的操作很频繁,意味着磁盘 I/O 次数会很多,这个过程势必会影响系统的性能,整个系统给人的感觉就是很卡。
下面针对回收内存导致的性能影响,说说常见的解决方式。
调整文件页和匿名页的回收倾向
从文件页和匿名页的回收操作来看,文件页的回收操作对系统的影响相比匿名页的回收操作会少一点,因为文件页对于干净页回收是不会发生磁盘 I/O 的,而匿名页的 Swap 换入换出这两个操作都会发生磁盘 I/O。
Linux 提供了一个 /proc/sys/vm/swappiness
选项,用来调整文件页和匿名页的回收倾向。
swappiness 的范围是 0-100,数值越大,越积极使用 Swap,也就是更倾向于回收匿名页;数值越小,越消极使用 Swap,也就是更倾向于回收文件页。
[root@xiaolin ~]# cat /proc/sys/vm/swappiness
0
一般建议 swappiness 设置为 0(默认值是 60),这样在回收内存的时候,会更倾向于文件页的回收,但是并不代表不会回收匿名页。
尽早触发 kswapd 内核线程异步回收内存
如何查看系统的直接内存回收和后台内存回收的指标?
我们可以使用 sar -B 1
命令来观察:
图中红色框住的就是后台内存回收和直接内存回收的指标,它们分别表示:
- pgscank/s : kswapd(后台回收线程) 每秒扫描的 page 个数。
- pgscand/s: 应用程序在内存申请过程中每秒直接扫描的 page 个数。
- pgsteal/s: 扫描的 page 中每秒被回收的个数(pgscank+pgscand)。
如果系统时不时发生抖动,并且在抖动的时间段里如果通过 sar -B 观察到 pgscand 数值很大,那大概率是因为「直接内存回收」导致的。
针对这个问题,解决的办法就是,可以通过尽早的触发「后台内存回收」来避免应用程序进行直接内存回收。
什么条件下才能触发 kswapd 内核线程回收内存呢?
内核定义了三个内存阈值(watermark,也称为水位),用来衡量当前剩余内存(pages_free)是否充裕或者紧张,分别是:
- 页最小阈值(pages_min);
- 页低阈值(pages_low);
- 页高阈值(pages_high);
这三个内存阈值会划分为四种内存使用情况,如下图:
kswapd 会定期扫描内存的使用情况,根据剩余内存(pages_free)的情况来进行内存回收的工作。
- 图中绿色部分:如果剩余内存(pages_free)大于 页高阈值(pages_high),说明剩余内存是充足的;
- 图中蓝色部分:如果剩余内存(pages_free)在页高阈值(pages_high)和页低阈值(pages_low)之间,说明内存有一定压力,但还可以满足应用程序申请内存的请求;
- 图中橙色部分:如果剩余内存(pages_free)在页低阈值(pages_low)和页最小阈值(pages_min)之间,说明内存压力比较大,剩余内存不多了。这时 kswapd0 会执行内存回收,直到剩余内存大于高阈值(pages_high)为止。虽然会触发内存回收,但是不会阻塞应用程序,因为两者关系是异步的。
- 图中红色部分:如果剩余内存(pages_free)小于页最小阈值(pages_min),说明用户可用内存都耗尽了,此时就会触发直接内存回收,这时应用程序就会被阻塞,因为两者关系是同步的。
可以看到,当剩余内存页(pages_free)小于页低阈值(pages_low),就会触发 kswapd 进行后台回收,然后 kswapd 会一直回收到剩余内存页(pages_free)大于页高阈值(pages_high)。
也就是说 kswapd 的活动空间只有 pages_low 与 pages_min 之间的这段区域,如果剩余内存低于了 pages_min 会触发直接内存回收,高于了 pages_high 又不会唤醒 kswapd。
页低阈值(pages_low)可以通过内核选项 /proc/sys/vm/min_free_kbytes
(该参数代表系统所保留空闲内存的最低限)来间接设置。
NUMA架构下的内存回收策略
什么是 NUMA 架构?
再说 NUMA 架构前,先给大家说说 SMP 架构,这两个架构都是针对 CPU 的。
SMP 指的是一种多个 CPU 处理器共享资源的电脑硬件架构,也就是说每个 CPU 地位平等,它们共享相同的物理资源,包括总线、内存、IO、操作系统等。每个 CPU 访问内存所用时间都是相同的,因此,这种系统也被称为一致存储访问结构(UMA,Uniform Memory Access)。
随着 CPU 处理器核数的增多,多个 CPU 都通过一个总线访问内存,这样总线的带宽压力会越来越大,同时每个 CPU 可用带宽会减少,这也就是 SMP 架构的问题。
为了解决 SMP 架构的问题,就研制出了 NUMA 结构,即非一致存储访问结构(Non-uniform memory access,NUMA)。
NUMA 架构将每个 CPU 进行了分组,每一组 CPU 用 Node 来表示,一个 Node 可能包含多个 CPU 。
每个 Node 有自己独立的资源,包括内存、IO 等,每个 Node 之间可以通过互联模块总线(QPI)进行通信,所以,也就意味着每个 Node 上的 CPU 都可以访问到整个系统中的所有内存。但是,访问远端 Node 的内存比访问本地内存要耗时很多。
NUMA 架构跟回收内存有什么关系?
在 NUMA 架构下,当某个 Node 内存不足时,系统可以从其他 Node 寻找空闲内存,也可以从本地内存中回收内存。
具体选哪种模式,可以通过 /proc/sys/vm/zone_reclaim_mode 来控制。它支持以下几个选项:
- 0 (默认值):在回收本地内存之前,在其他 Node 寻找空闲内存;
- 1:只回收本地内存;
- 2:只回收本地内存,在本地回收内存时,可以将文件页中的脏页写回硬盘,以回收内存。
- 4:只回收本地内存,在本地回收内存时,可以用 swap 方式回收内存。
在使用 NUMA 架构的服务器,如果系统出现还有一半内存的时候,却发现系统频繁触发「直接内存回收」,导致了影响了系统性能,那么大概率是因为 zone_reclaim_mode 没有设置为 0 ,导致当本地内存不足的时候,只选择回收本地内存的方式,而不去使用其他 Node 的空闲内存。
虽然说访问远端 Node 的内存比访问本地内存要耗时很多,但是相比内存回收的危害而言,访问远端 Node 的内存带来的性能影响还是比较小的。因此,zone_reclaim_mode 一般建议设置为 0。
如何保护一个进程不被 OOM 杀掉呢?
在系统空闲内存不足的情况,进程申请了一个很大的内存,如果直接内存回收都无法回收出足够大的空闲内存,那么就会触发 OOM 机制,内核就会根据算法选择一个进程杀掉。
Linux 到底是根据什么标准来选择被杀的进程呢?这就要提到一个在 Linux 内核里有一个 oom_badness()
函数,它会把系统中可以被杀掉的进程扫描一遍,并对每个进程打分,得分最高的进程就会被首先杀掉。
进程得分的结果受下面这两个方面影响:
- 第一,进程已经使用的物理内存页面数。
- 第二,每个进程的 OOM 校准值 oom_score_adj。它是可以通过
/proc/[pid]/oom_score_adj
来配置的。我们可以在设置 -1000 到 1000 之间的任意一个数值,调整进程被 OOM Kill 的几率。
函数 oom_badness() 里的最终计算方法是这样的:
// points 代表打分的结果
// process_pages 代表进程已经使用的物理内存页面数
// oom_score_adj 代表 OOM 校准值
// totalpages 代表系统总的可用页面数
points = process_pages + oom_score_adj*totalpages/1000
用「系统总的可用页面数」乘以 「OOM 校准值 oom_score_adj」再除以 1000,最后再加上进程已经使用的物理页面数,计算出来的值越大,那么这个进程被 OOM Kill 的几率也就越大。
每个进程的 oom_score_adj 默认值都为 0,所以最终得分跟进程自身消耗的内存有关,消耗的内存越大越容易被杀掉。我们可以通过调整 oom_score_adj 的数值,来改成进程的得分结果:
- 如果你不想某个进程被首先杀掉,那你可以调整该进程的 oom_score_adj,从而改变这个进程的得分结果,降低该进程被 OOM 杀死的概率。
- 如果你想某个进程无论如何都不能被杀掉,那你可以将 oom_score_adj 配置为 -1000。
我们最好将一些很重要的系统服务的 oom_score_adj 配置为 -1000,比如 sshd,因为这些系统服务一旦被杀掉,我们就很难再登陆进系统了。
但是,不建议将我们自己的业务程序的 oom_score_adj 设置为 -1000,因为业务程序一旦发生了内存泄漏,而它又不能被杀掉,这就会导致随着它的内存开销变大,OOM killer 不停地被唤醒,总结
内核在给应用程序分配物理内存的时候,如果空闲物理内存不够,那么就会进行内存回收的工作,主要有两种方式:
- 后台内存回收:在物理内存紧张的时候,会唤醒 kswapd 内核线程来回收内存,这个回收内存的过程异步的,不会阻塞进程的执行。
- 直接内存回收:如果后台异步回收跟不上进程内存申请的速度,就会开始直接回收,这个回收内存的过程是同步的,会阻塞进程的执行。
可被回收的内存类型有文件页和匿名页:
- 文件页的回收:对于干净页是直接释放内存,这个操作不会影响性能,而对于脏页会先写回到磁盘再释放内存,这个操作会发生磁盘 I/O 的,这个操作是会影响系统性能的。
- 匿名页的回收:如果开启了 Swap 机制,那么 Swap 机制会将不常访问的匿名页换出到磁盘中,下次访问时,再从磁盘换入到内存中,这个操作是会影响系统性能的。
文件页和匿名页的回收都是基于 LRU 算法,也就是优先回收不常访问的内存。回收内存的操作基本都会发生磁盘 I/O 的,如果回收内存的操作很频繁,意味着磁盘 I/O 次数会很多,这个过程势必会影响系统的性能。
针对回收内存导致的性能影响,常见的解决方式。
- 设置 /proc/sys/vm/swappiness,调整文件页和匿名页的回收倾向,尽量倾向于回收文件页;
- 设置 /proc/sys/vm/min_free_kbytes,调整 kswapd 内核线程异步回收内存的时机;
- 设置 /proc/sys/vm/zone_reclaim_mode,调整 NUMA 架构下内存回收策略,建议设置为 0,这样在回收本地内存之前,会在其他 Node 寻找空闲内存,从而避免在系统还有很多空闲内存的情况下,因本地 Node 的本地内存不足,发生频繁直接内存回收导致性能下降的问题;
在经历完直接内存回收后,空闲的物理内存大小依然不够,那么就会触发 OOM 机制,OOM killer 就会根据每个进程的内存占用情况和 oom_score_adj 的值进行打分,得分最高的进程就会被首先杀掉。
我们可以通过调整进程的 /proc/[pid]/oom_score_adj 值,来降低被 OOM killer 杀掉的概率。把其他进程一个个给杀掉。
总结
内核在给应用程序分配物理内存的时候,如果空闲物理内存不够,那么就会进行内存回收的工作,主要有两种方式:
- 后台内存回收:在物理内存紧张的时候,会唤醒 kswapd 内核线程来回收内存,这个回收内存的过程异步的,不会阻塞进程的执行。
- 直接内存回收:如果后台异步回收跟不上进程内存申请的速度,就会开始直接回收,这个回收内存的过程是同步的,会阻塞进程的执行。
可被回收的内存类型有文件页和匿名页:
- 文件页的回收:对于干净页是直接释放内存,这个操作不会影响性能,而对于脏页会先写回到磁盘再释放内存,这个操作会发生磁盘 I/O 的,这个操作是会影响系统性能的。
- 匿名页的回收:如果开启了 Swap 机制,那么 Swap 机制会将不常访问的匿名页换出到磁盘中,下次访问时,再从磁盘换入到内存中,这个操作是会影响系统性能的。
文件页和匿名页的回收都是基于 LRU 算法,也就是优先回收不常访问的内存。回收内存的操作基本都会发生磁盘 I/O 的,如果回收内存的操作很频繁,意味着磁盘 I/O 次数会很多,这个过程势必会影响系统的性能。
针对回收内存导致的性能影响,常见的解决方式。
- 设置 /proc/sys/vm/swappiness,调整文件页和匿名页的回收倾向,尽量倾向于回收文件页;
- 设置 /proc/sys/vm/min_free_kbytes,调整 kswapd 内核线程异步回收内存的时机;
- 设置 /proc/sys/vm/zone_reclaim_mode,调整 NUMA 架构下内存回收策略,建议设置为 0,这样在回收本地内存之前,会在其他 Node 寻找空闲内存,从而避免在系统还有很多空闲内存的情况下,因本地 Node 的本地内存不足,发生频繁直接内存回收导致性能下降的问题;
在经历完直接内存回收后,空闲的物理内存大小依然不够,那么就会触发 OOM 机制,OOM killer 就会根据每个进程的内存占用情况和 oom_score_adj 的值进行打分,得分最高的进程就会被首先杀掉。
我们可以通过调整进程的 /proc/[pid]/oom_score_adj 值,来降低被 OOM killer 杀掉的概率。
在 4GB 物理内存的机器上,申请 8G 内存会怎么样
其中,第一个问题「在 4GB 物理内存的机器上,申请 8G 内存会怎么样?」存在比较大的争议,有人说会申请失败,有的人说可以申请成功。
这个问题在没有前置条件下,就说出答案就是耍流氓。这个问题要考虑三个前置条件:
- 操作系统是 32 位的,还是 64 位的?
- 申请完 8G 内存后会不会被使用?
- 操作系统有没有使用 Swap 机制?
所以,我们要分场景讨论。
操作系统虚拟内存大小
应用程序通过 malloc 函数申请内存的时候,实际上申请的是虚拟内存,此时并不会分配物理内存。
当应用程序读写了这块虚拟内存,CPU 就会去访问这个虚拟内存, 这时会发现这个虚拟内存没有映射到物理内存, CPU 就会产生缺页中断,进程会从用户态切换到内核态,并将缺页中断交给内核的 Page Fault Handler (缺页中断函数)处理。
缺页中断处理函数会看是否有空闲的物理内存:
- 如果有,就直接分配物理内存,并建立虚拟内存与物理内存之间的映射关系。
- 如果没有空闲的物理内存,那么内核就会开始进行回收内存 (opens new window)的工作,如果回收内存工作结束后,空闲的物理内存仍然无法满足此次物理内存的申请,那么内核就会放最后的大招了触发 OOM (Out of Memory)机制。
32 位操作系统和 64 位操作系统的虚拟地址空间大小是不同的,在 Linux 操作系统中,虚拟地址空间的内部又被分为内核空间和用户空间两部分,如下所示:
通过这里可以看出:
32
位系统的内核空间占用1G
,位于最高处,剩下的3G
是用户空间;64
位系统的内核空间和用户空间都是128T
,分别占据整个内存空间的最高和最低处,剩下的中间部分是未定义的。
32 位系统的场景
现在可以回答这个问题了:在 32 位操作系统、4GB 物理内存的机器上,申请 8GB 内存,会怎么样?
因为 32 位操作系统,进程最多只能申请 3 GB 大小的虚拟内存空间,所以进程申请 8GB 内存的话,在申请虚拟内存阶段就会失败(我手上没有 32 位操作系统测试,我估计失败的错误是 cannot allocate memory,也就是无法申请内存失败)。
64 位系统的场景
在 64 位操作系统、4GB 物理内存的机器上,申请 8G 内存,会怎么样?
64 位操作系统,进程可以使用 128 TB 大小的虚拟内存空间,所以进程申请 8GB 内存是没问题的,因为进程申请内存是申请虚拟内存,只要不读写这个虚拟内存,操作系统就不会分配物理内存。
我们可以简单做个测试,我的服务器是 64 位操作系统,但是物理内存只有 2 GB:
现在,我在机器上,连续申请 4 次 1 GB 内存,也就是一共申请了 4 GB 内存,注意下面代码只是单纯分配了虚拟内存,并没有使用该虚拟内存:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#define MEM_SIZE 1024 * 1024 * 1024
int main() {
char* addr[4];
int i = 0;
for(i = 0; i < 4; ++i) {
addr[i] = (char*) malloc(MEM_SIZE);
if(!addr[i]) {
printf("执行 malloc 失败, 错误:%s\n",strerror(errno));
return -1;
}
printf("主线程调用malloc后,申请1gb大小得内存,此内存起始地址:0X%p\n", addr[i]);
}
//输入任意字符后,才结束
getchar();
return 0;
}
然后运行这个代码,可以看到,我的物理内存虽然只有 2GB,但是程序正常分配了 4GB 大小的虚拟内存:
我们可以通过下面这条命令查看进程(test)的虚拟内存大小:
# ps aux | grep test
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 7797 0.0 0.0 4198540 352 pts/1 S+ 16:58 0:00 ./test
其中,VSZ 就代表进程使用的虚拟内存大小,RSS 代表进程使用的物理内存大小。可以看到,VSZ 大小为 4198540,也就是 4GB 的虚拟内存。
之前有读者跟我反馈,说他自己也做了这个实验,然后发现 64 位操作系统,在申请 4GB 虚拟内存的时候失败了,这是为什么呢?
失败的错误:
我当时帮他排查了下,发现跟 Linux 中的 overcommit_memory (opens new window)参数有关,可以使用 cat /proc/sys/vm/overcommit_memory
来查看这个参数,这个参数接受三个值:
- 如果值为 0(默认值),代表:Heuristic overcommit handling,它允许overcommit,但过于明目张胆的overcommit会被拒绝,比如malloc一次性申请的内存大小就超过了系统总内存。Heuristic的意思是“试探式的”,内核利用某种算法猜测你的内存申请是否合理,大概可以理解为单次申请不能超过free memory + free swap + pagecache的大小 + SLAB中可回收的部分 ,超过了就会拒绝overcommit。
- 如果值为 1,代表:Always overcommit. 允许overcommit,对内存申请来者不拒。
- 如果值为 2,代表:Don’t overcommit. 禁止overcommit。
当时那位读者的 overcommit_memory 参数是默认值 0 ,所以申请失败的原因可能是内核认为我们申请的内存太大了,它认为不合理,所以 malloc() 返回了 Cannot allocate memory 错误,这里申请 4GB 虚拟内存失败的同学可以将这个 overcommit_memory 设置为1,就可以 overcommit 了。
echo 1 > /proc/sys/vm/overcommit_memory
设置完为 1 后,读者的机子就可以正常申请 4GB 虚拟内存了。
不过我的环境 overcommit_memory 是 0,在 64 系统、2 G 物理内存场景下,也是可以成功申请 4 G 内存的,我怀疑可能是不同版本的内核在 overcommit_memory 为 0 时,检测内存申请是否合理的算法可能是不同的。
总之,如果你申请大内存的时候,不想被内核检测内存申请是否合理的算法干扰的话,将 overcommit_memory 设置为 1 就行。
那么将这个 overcommit_memory 设置为 1 之后,64 位的主机就可以申请接近 128T 虚拟内存了吗?
不一定,还得看你服务器的物理内存大小。
读者的服务器物理内存是 2 GB,实验后发现,进程还没有申请到 128T 虚拟内存的时候就被杀死了。
注意,这次是 killed,而不是 Cannot Allocate Memory,说明并不是内存申请有问题,而是触发 OOM 了。
但是为什么会触发 OOM 呢?
那得看你的主机的「物理内存」够不够大了,即使 malloc 申请的是虚拟内存,只要不去访问就不会映射到物理内存,但是申请虚拟内存的过程中,还是使用到了物理内存(比如内核保存虚拟内存的数据结构,也是占用物理内存的),如果你的主机是只有 2GB 的物理内存的话,大概率会触发 OOM。
可以使用 top 命令,点击两下 m,通过进度条观察物理内存使用情况。
可以看到申请虚拟内存的过程中物理内存使用量一直在增长。
直到直接内存回收之后,也无法回收出一块空间供这个进程使用,这个时候就会触发 OOM,给所有能杀死的进程打分,分数越高的进程越容易被杀死。
在这里当然是这个进程得分最高,那么操作系统就会将这个进程杀死,所以最后会出现 killed,而不是Cannot allocate memory。
那么 2GB 的物理内存的 64 位操作系统,就不能申请128T的虚拟内存了吗?
其实可以,上面的情况是还没开启 swap 的情况。
使用 swapfile 的方式开启了 1GB 的 swap 空间之后再做实验:
发现出现了 Cannot allocate memory,但是其实到这里已经成功了,
打开计算器计算一下,发现已经申请了 127.998T 虚拟内存了。
实际上我们是不可能申请完整个 128T 的用户空间的,因为程序运行本身也需要申请虚拟空间
申请 127T 虚拟内存试试:
发现进程没有被杀死,也没有 Cannot allocate memory,也正好是 127T 虚拟内存空间。
在 top 中我们可以看到这个申请了127T虚拟内存的进程。
如何避免预读失效和缓存污染的问题?
咋一看,以为是在问操作系统的问题,其实这两个题目都是在问如何改进 LRU 算法。
因为传统的 LRU 算法存在这两个问题:
- 「预读失效」导致缓存命中率下降(对应第一个题目)
- 「缓存污染」导致缓存命中率下降(对应第二个题目)
Redis 的缓存淘汰算法则是通过实现 LFU 算法来避免「缓存污染」而导致缓存命中率下降的问题(Redis 没有预读机制)。
MySQL 和 Linux 操作系统是通过改进 LRU 算法来避免「预读失效和缓存污染」而导致缓存命中率下降的问题。
这次,就重点讲讲 MySQL 和 Linux 操作系统是如何改进 LRU 算法的?
好了,开始发车,坐稳了!
Linux 和 MySQL 的缓存
Linux 操作系统的缓存
在应用程序读取文件的数据的时候,Linux 操作系统是会对读取的文件数据进行缓存的,会缓存在文件系统中的 Page Cache(如下图中的页缓存)。
Page Cache 属于内存空间里的数据,由于内存访问比磁盘访问快很多,在下一次访问相同的数据就不需要通过磁盘 I/O 了,命中缓存就直接返回数据即可。
因此,Page Cache 起到了加速访问数据的作用。
MySQL 的缓存
MySQL 的数据是存储在磁盘里的,为了提升数据库的读写性能,Innodb 存储引擎设计了一个缓冲池(Buffer Pool),Buffer Pool 属于内存空间里的数据。
有了缓冲池后:
- 当读取数据时,如果数据存在于 Buffer Pool 中,客户端就会直接读取 Buffer Pool 中的数据,否则再去磁盘中读取。
- 当修改数据时,首先是修改 Buffer Pool 中数据所在的页,然后将其页设置为脏页,最后由后台线程将脏页写入到磁盘。
传统 LRU 是如何管理内存数据的?
Linux 的 Page Cache 和 MySQL 的 Buffer Pool 的大小是有限的,并不能无限的缓存数据,对于一些频繁访问的数据我们希望可以一直留在内存中,而一些很少访问的数据希望可以在某些时机可以淘汰掉,从而保证内存不会因为满了而导致无法再缓存新的数据,同时还能保证常用数据留在内存中。
要实现这个,最容易想到的就是 LRU(Least recently used)算法。
LRU 算法一般是用「链表」作为数据结构来实现的,链表头部的数据是最近使用的,而链表末尾的数据是最久没被使用的。那么,当空间不够了,就淘汰最久没被使用的节点,也就是链表末尾的数据,从而腾出内存空间。
因为 Linux 的 Page Cache 和 MySQL 的 Buffer Pool 缓存的基本数据单位都是页(Page)单位,所以后续以「页」名称代替「数据」。
传统的 LRU 算法的实现思路是这样的:
- 当访问的页在内存里,就直接把该页对应的 LRU 链表节点移动到链表的头部。
- 当访问的页不在内存里,除了要把该页放入到 LRU 链表的头部,还要淘汰 LRU 链表末尾的页。
比如下图,假设 LRU 链表长度为 5,LRU 链表从左到右有编号为 1,2,3,4,5 的页。
如果访问了 3 号页,因为 3 号页已经在内存了,所以把 3 号页移动到链表头部即可,表示最近被访问了。
而如果接下来,访问了 8 号页,因为 8 号页不在内存里,且 LRU 链表长度为 5,所以必须要淘汰数据,以腾出内存空间来缓存 8 号页,于是就会淘汰末尾的 5 号页,然后再将 8 号页加入到头部。
传统的 LRU 算法并没有被 Linux 和 MySQL 使用,因为传统的 LRU 算法无法避免下面这两个问题:
- 预读失效导致缓存命中率下降;
- 缓存污染导致缓存命中率下降;
预读失效,怎么办?
什么是预读机制?
Linux 操作系统为基于 Page Cache 的读缓存机制提供预读机制,一个例子是:
- 应用程序只想读取磁盘上文件 A 的 offset 为 0-3KB 范围内的数据,由于磁盘的基本读写单位为 block(4KB),于是操作系统至少会读 0-4KB 的内容,这恰好可以在一个 page 中装下。
- 但是操作系统出于空间局部性原理(靠近当前被访问数据的数据,在未来很大概率会被访问到),会选择将磁盘块 offset [4KB,8KB)、[8KB,12KB) 以及 [12KB,16KB) 都加载到内存,于是额外在内存中申请了 3 个 page;
下图代表了操作系统的预读机制:
上图中,应用程序利用 read 系统调动读取 4KB 数据,实际上内核使用预读机制(ReadaHead) 机制完成了 16KB 数据的读取,也就是通过一次磁盘顺序读将多个 Page 数据装入 Page Cache。
这样下次读取 4KB 数据后面的数据的时候,就不用从磁盘读取了,直接在 Page Cache 即可命中数据。因此,预读机制带来的好处就是减少了 磁盘 I/O 次数,提高系统磁盘 I/O 吞吐量。
MySQL Innodb 存储引擎的 Buffer Pool 也有类似的预读机制,MySQL 从磁盘加载页时,会提前把它相邻的页一并加载进来,目的是为了减少磁盘 IO。
预读失效会带来什么问题?
如果这些被提前加载进来的页,并没有被访问,相当于这个预读工作是白做了,这个就是预读失效。
如果使用传统的 LRU 算法,就会把「预读页」放到 LRU 链表头部,而当内存空间不够的时候,还需要把末尾的页淘汰掉。
如果这些「预读页」如果一直不会被访问到,就会出现一个很奇怪的问题,不会被访问的预读页却占用了 LRU 链表前排的位置,而末尾淘汰的页,可能是热点数据,这样就大大降低了缓存命中率 。
如何避免预读失效造成的影响?
我们不能因为害怕预读失效,而将预读机制去掉,大部分情况下,空间局部性原理还是成立的。
要避免预读失效带来影响,最好就是让预读页停留在内存里的时间要尽可能的短,让真正被访问的页才移动到 LRU 链表的头部,从而保证真正被读取的热数据留在内存里的时间尽可能长。
那到底怎么才能避免呢?
Linux 操作系统和 MySQL Innodb 通过改进传统 LRU 链表来避免预读失效带来的影响,具体的改进分别如下:
- Linux 操作系统实现两个了 LRU 链表:活跃 LRU 链表(active_list)和非活跃 LRU 链表(inactive_list);
- MySQL 的 Innodb 存储引擎是在一个 LRU 链表上划分来 2 个区域:young 区域 和 old 区域。
这两个改进方式,设计思想都是类似的,都是将数据分为了冷数据和热数据,然后分别进行 LRU 算法。不再像传统的 LRU 算法那样,所有数据都只用一个 LRU 算法管理。
接下来,具体聊聊 Linux 和 MySQL 是如何避免预读失效带来的影响?
Linux 是如何避免预读失效带来的影响?
Linux 操作系统实现两个了 LRU 链表:活跃 LRU 链表(active_list)和非活跃 LRU 链表(inactive_list)。
- active list 活跃内存页链表,这里存放的是最近被访问过(活跃)的内存页;
- inactive list 不活跃内存页链表,这里存放的是很少被访问(非活跃)的内存页;
有了这两个 LRU 链表后,预读页就只需要加入到 inactive list 区域的头部,当页被真正访问的时候,才将页插入 active list 的头部。如果预读的页一直没有被访问,就会从 inactive list 移除,这样就不会影响 active list 中的热点数据。
接下来,给大家举个例子。
假设 active list 和 inactive list 的长度为 5,目前内存中已经有如下 10 个页:
现在有个编号为 20 的页被预读了,这个页只会被插入到 inactive list 的头部,而 inactive list 末尾的页(10号)会被淘汰掉。
即使编号为 20 的预读页一直不会被访问,它也没有占用到 active list 的位置,而且还会比 active list 中的页更早被淘汰出去。
如果 20 号页被预读后,立刻被访问了,那么就会将它插入到 active list 的头部, active list 末尾的页(5号),会被降级到 inactive list ,作为 inactive list 的头部,这个过程并不会有数据被淘汰。
MySQL 是如何避免预读失效带来的影响?
MySQL 的 Innodb 存储引擎是在一个 LRU 链表上划分来 2 个区域,young 区域 和 old 区域。
young 区域在 LRU 链表的前半部分,old 区域则是在后半部分,这两个区域都有各自的头和尾节点,如下图:
young 区域与 old 区域在 LRU 链表中的占比关系并不是一比一的关系,而是 63:37(默认比例)的关系。
划分这两个区域后,预读的页就只需要加入到 old 区域的头部,当页被真正访问的时候,才将页插入 young 区域的头部。如果预读的页一直没有被访问,就会从 old 区域移除,这样就不会影响 young 区域中的热点数据。
接下来,给大家举个例子。
假设有一个长度为 10 的 LRU 链表,其中 young 区域占比 70 %,old 区域占比 30 %。
现在有个编号为 20 的页被预读了,这个页只会被插入到 old 区域头部,而 old 区域末尾的页(10号)会被淘汰掉。
如果 20 号页一直不会被访问,它也没有占用到 young 区域的位置,而且还会比 young 区域的数据更早被淘汰出去。
如果 20 号页被预读后,立刻被访问了,那么就会将它插入到 young 区域的头部,young 区域末尾的页(7号),会被挤到 old 区域,作为 old 区域的头部,这个过程并不会有页被淘汰。
缓存污染,怎么办?
什么是缓存污染?
虽然 Linux (实现两个 LRU 链表)和 MySQL (划分两个区域)通过改进传统的 LRU 数据结构,避免了预读失效带来的影响。
但是如果还是使用「只要数据被访问一次,就将数据加入到活跃 LRU 链表头部(或者 young 区域)」这种方式的话,那么还存在缓存污染的问题。
当我们在批量读取数据的时候,由于数据被访问了一次,这些大量数据都会被加入到「活跃 LRU 链表」里,然后之前缓存在活跃 LRU 链表(或者 young 区域)里的热点数据全部都被淘汰了,如果这些大量的数据在很长一段时间都不会被访问的话,那么整个活跃 LRU 链表(或者 young 区域)就被污染了。
缓存污染会带来什么问题?
缓存污染带来的影响就是很致命的,等这些热数据又被再次访问的时候,由于缓存未命中,就会产生大量的磁盘 I/O,系统性能就会急剧下降。
我以 MySQL 举例子,Linux 发生缓存污染的现象也是类似。
当某一个 SQL 语句扫描了大量的数据时,在 Buffer Pool 空间比较有限的情况下,可能会将 Buffer Pool 里的所有页都替换出去,导致大量热数据被淘汰了,等这些热数据又被再次访问的时候,由于缓存未命中,就会产生大量的磁盘 I/O,MySQL 性能就会急剧下降。
注意, 缓存污染并不只是查询语句查询出了大量的数据才出现的问题,即使查询出来的结果集很小,也会造成缓存污染。
比如,在一个数据量非常大的表,执行了这条语句:
select * from t_user where name like "%xiaolin%";
可能这个查询出来的结果就几条记录,但是由于这条语句会发生索引失效,所以这个查询过程是全表扫描的,接着会发生如下的过程:
- 从磁盘读到的页加入到 LRU 链表的 old 区域头部;
- 当从页里读取行记录时,也就是页被访问的时候,就要将该页放到 young 区域头部;
- 接下来拿行记录的 name 字段和字符串 xiaolin 进行模糊匹配,如果符合条件,就加入到结果集里;
- 如此往复,直到扫描完表中的所有记录。
经过这一番折腾,由于这条 SQL 语句访问的页非常多,每访问一个页,都会将其加入 young 区域头部,那么原本 young 区域的热点数据都会被替换掉,导致缓存命中率下降。那些在批量扫描时,而被加入到 young 区域的页,如果在很长一段时间都不会再被访问的话,那么就污染了 young 区域。
举个例子,假设需要批量扫描:21,22,23,24,25 这五个页,这些页都会被逐一访问(读取页里的记录)。
在批量访问这些页的时候,会被逐一插入到 young 区域头部。
可以看到,原本在 young 区域的 6 和 7 号页都被淘汰了,而批量扫描的页基本占满了 young 区域,如果这些页在很长一段时间都不会被访问,那么就对 young 区域造成了污染。
如果 6 和 7 号页是热点数据,那么在被淘汰后,后续有 SQL 再次读取 6 和 7 号页时,由于缓存未命中,就要从磁盘中读取了,降低了 MySQL 的性能,这就是缓存污染带来的影响。
怎么避免缓存污染造成的影响?
前面的 LRU 算法只要数据被访问一次,就将数据加入活跃 LRU 链表(或者 young 区域),这种 LRU 算法进入活跃 LRU 链表的门槛太低了!正式因为门槛太低,才导致在发生缓存污染的时候,很容就将原本在活跃 LRU 链表里的热点数据淘汰了。
所以,只要我们提高进入到活跃 LRU 链表(或者 young 区域)的门槛,就能有效地保证活跃 LRU 链表(或者 young 区域)里的热点数据不会被轻易替换掉。
Linux 操作系统和 MySQL Innodb 存储引擎分别是这样提高门槛的:
-
Linux 操作系统:在内存页被访问第二次的时候,才将页从 inactive list 升级到 active list 里。
-
MySQL Innodb
:在内存页被访问
第二次
的时候,并不会马上将该页从 old 区域升级到 young 区域,因为还要进行
停留在 old 区域的时间判断
:
- 如果第二次的访问时间与第一次访问的时间在 1 秒内(默认值),那么该页就不会被从 old 区域升级到 young 区域;
- 如果第二次的访问时间与第一次访问的时间超过 1 秒,那么该页就会从 old 区域升级到 young 区域;
提高了进入活跃 LRU 链表(或者 young 区域)的门槛后,就很好了避免缓存污染带来的影响。
在批量读取数据时候,如果这些大量数据只会被访问一次,那么它们就不会进入到活跃 LRU 链表(或者 young 区域),也就不会把热点数据淘汰,只会待在非活跃 LRU 链表(或者 old 区域)中,后续很快也会被淘汰。
总结
传统的 LRU 算法法无法避免下面这两个问题:
- 预读失效导致缓存命中率下降;
- 缓存污染导致缓存命中率下降;
为了避免「预读失效」造成的影响,Linux 和 MySQL 对传统的 LRU 链表做了改进:
- Linux 操作系统实现两个了 LRU 链表:活跃 LRU 链表(active list)和非活跃 LRU 链表(inactive list)。
- MySQL Innodb 存储引擎是在一个 LRU 链表上划分来 2 个区域:young 区域 和 old 区域。
但是如果还是使用「只要数据被访问一次,就将数据加入到活跃 LRU 链表头部(或者 young 区域)」这种方式的话,那么还存在缓存污染的问题。
为了避免「缓存污染」造成的影响,Linux 操作系统和 MySQL Innodb 存储引擎分别提高了升级为热点数据的门槛:
-
Linux 操作系统:在内存页被访问第二次的时候,才将页从 inactive list 升级到 active list 里。
-
MySQL Innodb:在内存页被访问
第二次
的时候,并不会马上将该页从 old 区域升级到 young 区域,因为还要进行
停留在 old 区域的时间判断
:
- 如果第二次的访问时间与第一次访问的时间在 1 秒内(默认值),那么该页就不会被从 old 区域升级到 young 区域;
- 如果第二次的访问时间与第一次访问的时间超过 1 秒,那么该页就会从 old 区域升级到 young 区域;
通过提高了进入 active list (或者 young 区域)的门槛后,就很好了避免缓存污染带来的影响。
完!
进程管理
进程、线程基础知识
进程和线程对于写代码的我们,真的天天见、日日见了,但见的多不代表你就熟悉它们,比如简单问你一句,你知道它们的工作原理和区别吗?
不知道没关系,今天就要跟大家讨论操作系统的进程和线程。
TIP
先强调一下,我们本篇讲的主要都是操作系统理论知识,偏大学计算机专业课上的那种,并不是讲解 Linux 或 Windows 操作系统的实现方式,所以大家要区别一下。
想让了解 Linux 或 Windows 操作系统的具体实现,得去看这些操作系统的实现原理或者源码书籍。
进程
我们编写的代码只是一个存储在硬盘的静态文件,通过编译后就会生成二进制可执行文件,当我们运行这个可执行文件后,它会被装载到内存中,接着 CPU 会执行程序中的每一条指令,那么这个运行中的程序,就被称为「进程」(Process)。
现在我们考虑有一个会读取硬盘文件数据的程序被执行了,那么当运行到读取文件的指令时,就会去从硬盘读取数据,但是硬盘的读写速度是非常慢的,那么在这个时候,如果 CPU 傻傻的等硬盘返回数据的话,那 CPU 的利用率是非常低的。
做个类比,你去煮开水时,你会傻傻的等水壶烧开吗?很明显,小孩也不会傻等。我们可以在水壶烧开之前去做其他事情。当水壶烧开了,我们自然就会听到“嘀嘀嘀”的声音,于是再把烧开的水倒入到水杯里就好了。
所以,当进程要从硬盘读取数据时,CPU 不需要阻塞等待数据的返回,而是去执行另外的进程。当硬盘数据返回时,CPU 会收到个中断,于是 CPU 再继续运行这个进程。
这种多个程序、交替执行的思想,就有 CPU 管理多个进程的初步想法。
对于一个支持多进程的系统,CPU 会从一个进程快速切换至另一个进程,其间每个进程各运行几十或几百个毫秒。
虽然单核的 CPU 在某一个瞬间,只能运行一个进程。但在 1 秒钟期间,它可能会运行多个进程,这样就产生并行的错觉,实际上这是并发。
并发和并行有什么区别?
一图胜千言。
进程与程序的关系的类比
到了晚饭时间,一对小情侣肚子都咕咕叫了,于是男生见机行事,就想给女生做晚饭,所以他就在网上找了辣子鸡的菜谱,接着买了一些鸡肉、辣椒、香料等材料,然后边看边学边做这道菜。
突然,女生说她想喝可乐,那么男生只好把做菜的事情暂停一下,并在手机菜谱标记做到哪一个步骤,把状态信息记录了下来。
然后男生听从女生的指令,跑去下楼买了一瓶冰可乐后,又回到厨房继续做菜。
这体现了,CPU 可以从一个进程(做菜)切换到另外一个进程(买可乐),在切换前必须要记录当前进程中运行的状态信息,以备下次切换回来的时候可以恢复执行。
所以,可以发现进程有着「运行 - 暂停 - 运行」的活动规律。
进程的状态程的状态
在上面,我们知道了进程有着「运行 - 暂停 - 运行」的活动规律。一般说来,一个进程并不是自始至终连续不停地运行的,它与并发执行中的其他进程的执行是相互制约的。
它有时处于运行状态,有时又由于某种原因而暂停运行处于等待状态,当使它暂停的原因消失后,它又进入准备运行状态。
所以,在一个进程的活动期间至少具备三种基本状态,即运行状态、就绪状态、阻塞状态。
上图中各个状态的意义:
- 运行状态(Running):该时刻进程占用 CPU;
- 就绪状态(Ready):可运行,由于其他进程处于运行状态而暂时停止运行;
- 阻塞状态(Blocked):该进程正在等待某一事件发生(如等待输入/输出操作的完成)而暂时停止运行,这时,即使给它CPU控制权,它也无法运行;
当然,进程还有另外两个基本状态:
- 创建状态(new):进程正在被创建时的状态;
- 结束状态(Exit):进程正在从系统中消失时的状态;
于是,一个完整的进程状态的变迁如下图:
再来详细说明一下进程的状态变迁:
- NULL -> 创建状态:一个新进程被创建时的第一个状态;
- 创建状态 -> 就绪状态:当进程被创建完成并初始化后,一切就绪准备运行时,变为就绪状态,这个过程是很快的;
- 就绪态 -> 运行状态:处于就绪状态的进程被操作系统的进程调度器选中后,就分配给 CPU 正式运行该进程;
- 运行状态 -> 结束状态:当进程已经运行完成或出错时,会被操作系统作结束状态处理;
- 运行状态 -> 就绪状态:处于运行状态的进程在运行过程中,由于分配给它的运行时间片用完,操作系统会把该进程变为就绪态,接着从就绪态选中另外一个进程运行;
- 运行状态 -> 阻塞状态:当进程请求某个事件且必须等待时,例如请求 I/O 事件;
- 阻塞状态 -> 就绪状态:当进程要等待的事件完成时,它从阻塞状态变到就绪状态;
如果有大量处于阻塞状态的进程,进程可能会占用着物理内存空间,显然不是我们所希望的,毕竟物理内存空间是有限的,被阻塞状态的进程占用着物理内存就一种浪费物理内存的行为。
所以,在虚拟内存管理的操作系统中,通常会把阻塞状态的进程的物理内存空间换出到硬盘,等需要再次运行的时候,再从硬盘换入到物理内存。
那么,就需要一个新的状态,来描述进程没有占用实际的物理内存空间的情况,这个状态就是挂起状态。这跟阻塞状态是不一样,阻塞状态是等待某个事件的返回。
另外,挂起状态可以分为两种:
- 阻塞挂起状态:进程在外存(硬盘)并等待某个事件的出现;
- 就绪挂起状态:进程在外存(硬盘),但只要进入内存,即刻立刻运行;
这两种挂起状态加上前面的五种状态,就变成了七种状态变迁(留给我的颜色不多了),见如下图:
导致进程挂起的原因不只是因为进程所使用的内存空间不在物理内存,还包括如下情况:
- 通过 sleep 让进程间歇性挂起,其工作原理是设置一个定时器,到期后唤醒进程。
- 用户希望挂起一个程序的执行,比如在 Linux 中用
Ctrl+Z
挂起进程;
进程的控制结构
在操作系统中,是用进程控制块(process control block,PCB)数据结构来描述进程的。
那 PCB 是什么呢?打开知乎搜索你就会发现这个东西并不是那么简单。
打住打住,我们是个正经的人,怎么会去看那些问题呢?是吧,回来回来。
PCB 是进程存在的唯一标识,这意味着一个进程的存在,必然会有一个 PCB,如果进程消失了,那么 PCB 也会随之消失。
PCB 具体包含什么信息呢?
进程描述信息:
- 进程标识符:标识各个进程,每个进程都有一个并且唯一的标识符;
- 用户标识符:进程归属的用户,用户标识符主要为共享和保护服务;
进程控制和管理信息:
- 进程当前状态,如 new、ready、running、waiting 或 blocked 等;
- 进程优先级:进程抢占 CPU 时的优先级;
资源分配清单:
- 有关内存地址空间或虚拟地址空间的信息,所打开文件的列表和所使用的 I/O 设备信息。
CPU 相关信息:
- CPU 中各个寄存器的值,当进程被切换时,CPU 的状态信息都会被保存在相应的 PCB 中,以便进程重新执行时,能从断点处继续执行。
可见,PCB 包含信息还是比较多的。
每个 PCB 是如何组织的呢?
通常是通过链表的方式进行组织,把具有相同状态的进程链在一起,组成各种队列。比如:
- 将所有处于就绪状态的进程链在一起,称为就绪队列;
- 把所有因等待某事件而处于等待状态的进程链在一起就组成各种阻塞队列;
- 另外,对于运行队列在单核 CPU 系统中则只有一个运行指针了,因为单核 CPU 在某个时间,只能运行一个程序。
那么,就绪队列和阻塞队列链表的组织形式如下图:
除了链接的组织方式,还有索引方式,它的工作原理:将同一状态的进程组织在一个索引表中,索引表项指向相应的 PCB,不同状态对应不同的索引表。
一般会选择链表,因为可能面临进程创建,销毁等调度导致进程状态发生变化,所以链表能够更加灵活的插入和删除。
进程的控制
我们熟知了进程的状态变迁和进程的数据结构 PCB 后,再来看看进程的创建、终止、阻塞、唤醒的过程,这些过程也就是进程的控制。
01 创建进程
操作系统允许一个进程创建另一个进程,而且允许子进程继承父进程所拥有的资源。
创建进程的过程如下:
- 申请一个空白的 PCB,并向 PCB 中填写一些控制和管理进程的信息,比如进程的唯一标识等;
- 为该进程分配运行时所必需的资源,比如内存资源;
- 将 PCB 插入到就绪队列,等待被调度运行;
02 终止进程
进程可以有 3 种终止方式:正常结束、异常结束以及外界干预(信号 kill
掉)。
当子进程被终止时,其在父进程处继承的资源应当还给父进程。而当父进程被终止时,该父进程的子进程就变为孤儿进程,会被 1 号进程收养,并由 1 号进程对它们完成状态收集工作。
终止进程的过程如下:
- 查找需要终止的进程的 PCB;
- 如果处于执行状态,则立即终止该进程的执行,然后将 CPU 资源分配给其他进程;
- 如果其还有子进程,则应将该进程的子进程交给 1 号进程接管;
- 将该进程所拥有的全部资源都归还给操作系统;
- 将其从 PCB 所在队列中删除;
03 阻塞进程
当进程需要等待某一事件完成时,它可以调用阻塞语句把自己阻塞等待。而一旦被阻塞等待,它只能由另一个进程唤醒。
阻塞进程的过程如下:
- 找到将要被阻塞进程标识号对应的 PCB;
- 如果该进程为运行状态,则保护其现场,将其状态转为阻塞状态,停止运行;
- 将该 PCB 插入到阻塞队列中去;
04 唤醒进程
进程由「运行」转变为「阻塞」状态是由于进程必须等待某一事件的完成,所以处于阻塞状态的进程是绝对不可能叫醒自己的。
如果某进程正在等待 I/O 事件,需由别的进程发消息给它,则只有当该进程所期待的事件出现时,才由发现者进程用唤醒语句叫醒它。
唤醒进程的过程如下:
- 在该事件的阻塞队列中找到相应进程的 PCB;
- 将其从阻塞队列中移出,并置其状态为就绪状态;
- 把该 PCB 插入到就绪队列中,等待调度程序调度;
进程的阻塞和唤醒是一对功能相反的语句,如果某个进程调用了阻塞语句,则必有一个与之对应的唤醒语句。
进程的上下文切换
各个进程之间是共享 CPU 资源的,在不同的时候进程之间需要切换,让不同的进程可以在 CPU 执行,那么这个一个进程切换到另一个进程运行,称为进程的上下文切换。
在详细说进程上下文切换前,我们先来看看 CPU 上下文切换
大多数操作系统都是多任务,通常支持大于 CPU 数量的任务同时运行。实际上,这些任务并不是同时运行的,只是因为系统在很短的时间内,让各个任务分别在 CPU 运行,于是就造成同时运行的错觉。
任务是交给 CPU 运行的,那么在每个任务运行前,CPU 需要知道任务从哪里加载,又从哪里开始运行。
所以,操作系统需要事先帮 CPU 设置好 CPU 寄存器和程序计数器。
CPU 寄存器是 CPU 内部一个容量小,但是速度极快的内存(缓存)。我举个例子,寄存器像是你的口袋,内存像你的书包,硬盘则是你家里的柜子,如果你的东西存放到口袋,那肯定是比你从书包或家里柜子取出来要快的多。
再来,程序计数器则是用来存储 CPU 正在执行的指令位置、或者即将执行的下一条指令位置。
所以说,CPU 寄存器和程序计数是 CPU 在运行任何任务前,所必须依赖的环境,这些环境就叫做 CPU 上下文。
既然知道了什么是 CPU 上下文,那理解 CPU 上下文切换就不难了。
CPU 上下文切换就是先把前一个任务的 CPU 上下文(CPU 寄存器和程序计数器)保存起来,然后加载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置,运行新任务。
系统内核会存储保持下来的上下文信息,当此任务再次被分配给 CPU 运行时,CPU 会重新加载这些上下文,这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。
上面说到所谓的「任务」,主要包含进程、线程和中断。所以,可以根据任务的不同,把 CPU 上下文切换分成:进程上下文切换、线程上下文切换和中断上下文切换。
进程的上下文切换到底是切换什么呢?
进程是由内核管理和调度的,所以进程的切换只能发生在内核态。
所以,进程的上下文切换不仅包含了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的资源。
通常,会把交换的信息保存在进程的 PCB,当要运行另外一个进程的时候,我们需要从这个进程的 PCB 取出上下文,然后恢复到 CPU 中,这使得这个进程可以继续执行,如下图所示:
大家需要注意,进程的上下文开销是很关键的,我们希望它的开销越小越好,这样可以使得进程可以把更多时间花费在执行程序上,而不是耗费在上下文切换。
发生进程上下文切换有哪些场景?
- 为了保证所有进程可以得到公平调度,CPU 时间被划分为一段段的时间片,这些时间片再被轮流分配给各个进程。这样,当某个进程的时间片耗尽了,进程就从运行状态变为就绪状态,系统从就绪队列选择另外一个进程运行;
- 进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其他进程运行;
- 当进程通过睡眠函数 sleep 这样的方法将自己主动挂起时,自然也会重新调度;
- 当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行;
- 发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序;
以上,就是发生进程上下文切换的常见场景了。
线程
在早期的操作系统中都是以进程作为独立运行的基本单位,直到后面,计算机科学家们又提出了更小的能独立运行的基本单位,也就是线程。
为什么使用线程?
我们举个例子,假设你要编写一个视频播放器软件,那么该软件功能的核心模块有三个:
- 从视频文件当中读取数据;
- 对读取的数据进行解压缩;
- 把解压缩后的视频数据播放出来;
对于单进程的实现方式,我想大家都会是以下这个方式:
对于单进程的这种方式,存在以下问题:
- 播放出来的画面和声音会不连贯,因为当 CPU 能力不够强的时候,
Read
的时候可能进程就等在这了,这样就会导致等半天才进行数据解压和播放; - 各个函数之间不是并发执行,影响资源的使用效率;
那改进成多进程的方式:
对于多进程的这种方式,依然会存在问题:
- 进程之间如何通信,共享数据?
- 维护进程的系统开销较大,如创建进程时,分配资源、建立 PCB;终止进程时,回收资源、撤销 PCB;进程切换时,保存当前进程的状态信息;
那到底如何解决呢?需要有一种新的实体,满足以下特性:
- 实体之间可以并发运行;
- 实体之间共享相同的地址空间;
这个新的实体,就是线程( *Thread* ),线程之间可以并发运行且共享相同的地址空间。
什么是线程?
线程是进程当中的一条执行流程。
同一个进程内多个线程之间可以共享代码段、数据段、打开的文件等资源,但每个线程各自都有一套独立的寄存器和栈,这样可以确保线程的控制流是相对独立的。
线程的优缺点?
线程的优点:
- 一个进程中可以同时存在多个线程;
- 各个线程之间可以并发执行;
- 各个线程之间可以共享地址空间和文件等资源;
线程的缺点:
- 当进程中的一个线程崩溃时,会导致其所属进程的所有线程崩溃(这里是针对 C/C++ 语言,Java语言中的线程奔溃不会造成进程崩溃,具体分析原因可以看这篇:线程崩溃了,进程也会崩溃吗? (opens new window))。
举个例子,对于游戏的用户设计,则不应该使用多线程的方式,否则一个用户挂了,会影响其他同个进程的线程。
线程与进程的比较
线程与进程的比较如下:
- 进程是资源(包括内存、打开的文件等)分配的单位,线程是 CPU 调度的单位;
- 进程拥有一个完整的资源平台,而线程只独享必不可少的资源,如寄存器和栈;
- 线程同样具有就绪、阻塞、执行三种基本状态,同样具有状态之间的转换关系;
- 线程能减少并发执行的时间和空间开销;
对于,线程相比进程能减少开销,体现在:
- 线程的创建时间比进程快,因为进程在创建的过程中,还需要资源管理信息,比如内存管理信息、文件管理信息,而线程在创建的过程中,不会涉及这些资源管理信息,而是共享它们;
- 线程的终止时间比进程快,因为线程释放的资源相比进程少很多;
- 同一个进程内的线程切换比进程切换快,因为线程具有相同的地址空间(虚拟内存共享),这意味着同一个进程的线程都具有同一个页表,那么在切换的时候不需要切换页表。而对于进程之间的切换,切换的时候要把页表给切换掉,而页表的切换过程开销是比较大的;
- 由于同一进程的各线程间共享内存和文件资源,那么在线程之间数据传递的时候,就不需要经过内核了,这就使得线程之间的数据交互效率更高了;
所以,不管是时间效率,还是空间效率线程比进程都要高。
线程的上下文切换
在前面我们知道了,线程与进程最大的区别在于:线程是调度的基本单位,而进程则是资源拥有的基本单位。
所以,所谓操作系统的任务调度,实际上的调度对象是线程,而进程只是给线程提供了虚拟内存、全局变量等资源。
对于线程和进程,我们可以这么理解:
- 当进程只有一个线程时,可以认为进程就等于线程;
- 当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源,这些资源在上下文切换时是不需要修改的;
另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。
线程上下文切换的是什么?
这还得看线程是不是属于同一个进程:
- 当两个线程不是属于同一个进程,则切换的过程就跟进程上下文切换一样;
- 当两个线程是属于同一个进程,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据;
所以,线程的上下文切换相比进程,开销要小很多。
线程的实现
主要有三种线程的实现方式:
- 用户线程(*User Thread*):在用户空间实现的线程,不是由内核管理的线程,是由用户态的线程库来完成线程的管理;
- 内核线程(*Kernel Thread*):在内核中实现的线程,是由内核管理的线程;
- 轻量级进程(*LightWeight Process*):在内核中来支持用户线程;
那么,这还需要考虑一个问题,用户线程和内核线程的对应关系。
首先,第一种关系是多对一的关系,也就是多个用户线程对应同一个内核线程:
第二种是一对一的关系,也就是一个用户线程对应一个内核线程:
第三种是多对多的关系,也就是多个用户线程对应到多个内核线程:
用户线程如何理解?存在什么优势和缺陷?
用户线程是基于用户态的线程管理库来实现的,那么线程控制块(*Thread Control Block, TCB*) 也是在库里面来实现的,对于操作系统而言是看不到这个 TCB 的,它只能看到整个进程的 PCB。
所以,用户线程的整个线程管理和调度,操作系统是不直接参与的,而是由用户级线程库函数来完成线程的管理,包括线程的创建、终止、同步和调度等。
用户级线程的模型,也就类似前面提到的多对一的关系,即多个用户线程对应同一个内核线程,如下图所示:
用户线程的优点:
- 每个进程都需要有它私有的线程控制块(TCB)列表,用来跟踪记录它各个线程状态信息(PC、栈指针、寄存器),TCB 由用户级线程库函数来维护,可用于不支持线程技术的操作系统;
- 用户线程的切换也是由线程库函数来完成的,无需用户态与内核态的切换,所以速度特别快;
用户线程的缺点:
- 由于操作系统不参与线程的调度,如果一个线程发起了系统调用而阻塞,那进程所包含的用户线程都不能执行了。
- 当一个线程开始运行后,除非它主动地交出 CPU 的使用权,否则它所在的进程当中的其他线程无法运行,因为用户态的线程没法打断当前运行中的线程,它没有这个特权,只有操作系统才有,但是用户线程不是由操作系统管理的。
- 由于时间片分配给进程,故与其他进程比,在多线程执行时,每个线程得到的时间片较少,执行会比较慢;
以上,就是用户线程的优缺点了。
那内核线程如何理解?存在什么优势和缺陷?
内核线程是由操作系统管理的,线程对应的 TCB 自然是放在操作系统里的,这样线程的创建、终止和管理都是由操作系统负责。
内核线程的模型,也就类似前面提到的一对一的关系,即一个用户线程对应一个内核线程,如下图所示:
内核线程的优点:
- 在一个进程当中,如果某个内核线程发起系统调用而被阻塞,并不会影响其他内核线程的运行;
- 分配给线程,多线程的进程获得更多的 CPU 运行时间;
内核线程的缺点:
- 在支持内核线程的操作系统中,由内核来维护进程和线程的上下文信息,如 PCB 和 TCB;
- 线程的创建、终止和切换都是通过系统调用的方式来进行,因此对于系统来说,系统开销比较大;
以上,就是内核线程的优缺点了。
最后的轻量级进程如何理解?
轻量级进程(*Light-weight process,LWP*)是内核支持的用户线程,一个进程可有一个或多个 LWP,每个 LWP 是跟内核线程一对一映射的,也就是 LWP 都是由一个内核线程支持,而且 LWP 是由内核管理并像普通进程一样被调度。
在大多数系统中,LWP与普通进程的区别也在于它只有一个最小的执行上下文和调度程序所需的统计信息。一般来说,一个进程代表程序的一个实例,而 LWP 代表程序的执行线程,因为一个执行线程不像进程那样需要那么多状态信息,所以 LWP 也不带有这样的信息。
在 LWP 之上也是可以使用用户线程的,那么 LWP 与用户线程的对应关系就有三种:
1 : 1
,即一个 LWP 对应 一个用户线程;N : 1
,即一个 LWP 对应多个用户线程;M : N
,即多个 LWP 对应多个用户线程;
接下来针对上面这三种对应关系说明它们优缺点。先看下图的 LWP 模型:
1 : 1 模式
一个线程对应到一个 LWP 再对应到一个内核线程,如上图的进程 4,属于此模型。
- 优点:实现并行,当一个 LWP 阻塞,不会影响其他 LWP;
- 缺点:每一个用户线程,就产生一个内核线程,创建线程的开销较大。
N : 1 模式
多个用户线程对应一个 LWP 再对应一个内核线程,如上图的进程 2,线程管理是在用户空间完成的,此模式中用户的线程对操作系统不可见。
- 优点:用户线程要开几个都没问题,且上下文切换发生用户空间,切换的效率较高;
- 缺点:一个用户线程如果阻塞了,则整个进程都将会阻塞,另外在多核 CPU 中,是没办法充分利用 CPU 的。
M : N 模式
根据前面的两个模型混搭一起,就形成 M:N
模型,该模型提供了两级控制,首先多个用户线程对应到多个 LWP,LWP 再一一对应到内核线程,如上图的进程 3。
- 优点:综合了前两种优点,大部分的线程上下文发生在用户空间,且多个线程又可以充分利用多核 CPU 的资源。
组合模式
如上图的进程 5,此进程结合 1:1
模型和 M:N
模型。开发人员可以针对不同的应用特点调节内核线程的数目来达到物理并行性和逻辑并行性的最佳方案。
调度
进程都希望自己能够占用 CPU 进行工作,那么这涉及到前面说过的进程上下文切换。
一旦操作系统把进程切换到运行状态,也就意味着该进程占用着 CPU 在执行,但是当操作系统把进程切换到其他状态时,那就不能在 CPU 中执行了,于是操作系统会选择下一个要运行的进程。
选择一个进程运行这一功能是在操作系统中完成的,通常称为调度程序(scheduler)。
那到底什么时候调度进程,或以什么原则来调度进程呢?
TIP
我知道很多人会问,线程不是操作系统的调度单位吗?为什么这里参与调度的是进程?
先提前说明,这里的进程指只有主线程的进程,所以调度主线程就等于调度了整个进程。
那为什么干脆不直接取名线程调度?主要是操作系统相关书籍,都是用进程调度这个名字,所以我也沿用了这个名字。
调度时机
在进程的生命周期中,当进程从一个运行状态到另外一状态变化的时候,其实会触发一次调度。
比如,以下状态的变化都会触发操作系统的调度:
- 从就绪态 -> 运行态:当进程被创建时,会进入到就绪队列,操作系统会从就绪队列选择一个进程运行;
- 从运行态 -> 阻塞态:当进程发生 I/O 事件而阻塞时,操作系统必须选择另外一个进程运行;
- 从运行态 -> 结束态:当进程退出结束后,操作系统得从就绪队列选择另外一个进程运行;
因为,这些状态变化的时候,操作系统需要考虑是否要让新的进程给 CPU 运行,或者是否让当前进程从 CPU 上退出来而换另一个进程运行。
另外,如果硬件时钟提供某个频率的周期性中断,那么可以根据如何处理时钟中断 ,把调度算法分为两类:
- 非抢占式调度算法挑选一个进程,然后让该进程运行直到被阻塞,或者直到该进程退出,才会调用另外一个进程,也就是说不会理时钟中断这个事情。
- 抢占式调度算法挑选一个进程,然后让该进程只运行某段时间,如果在该时段结束时,该进程仍然在运行时,则会把它挂起,接着调度程序从就绪队列挑选另外一个进程。这种抢占式调度处理,需要在时间间隔的末端发生时钟中断,以便把 CPU 控制返回给调度程序进行调度,也就是常说的时间片机制。
调度原则
原则一:如果运行的程序,发生了 I/O 事件的请求,那 CPU 使用率必然会很低,因为此时进程在阻塞等待硬盘的数据返回。这样的过程,势必会造成 CPU 突然的空闲。所以,为了提高 CPU 利用率,在这种发送 I/O 事件致使 CPU 空闲的情况下,调度程序需要从就绪队列中选择一个进程来运行。
原则二:有的程序执行某个任务花费的时间会比较长,如果这个程序一直占用着 CPU,会造成系统吞吐量(CPU 在单位时间内完成的进程数量)的降低。所以,要提高系统的吞吐率,调度程序要权衡长任务和短任务进程的运行完成数量。
原则三:从进程开始到结束的过程中,实际上是包含两个时间,分别是进程运行时间和进程等待时间,这两个时间总和就称为周转时间。进程的周转时间越小越好,如果进程的等待时间很长而运行时间很短,那周转时间就很长,这不是我们所期望的,调度程序应该避免这种情况发生。
原则四:处于就绪队列的进程,也不能等太久,当然希望这个等待的时间越短越好,这样可以使得进程更快的在 CPU 中执行。所以,就绪队列中进程的等待时间也是调度程序所需要考虑的原则。
原则五:对于鼠标、键盘这种交互式比较强的应用,我们当然希望它的响应时间越快越好,否则就会影响用户体验了。所以,对于交互式比较强的应用,响应时间也是调度程序需要考虑的原则。
针对上面的五种调度原则,总结成如下:
- CPU 利用率:调度程序应确保 CPU 是始终匆忙的状态,这可提高 CPU 的利用率;
- 系统吞吐量:吞吐量表示的是单位时间内 CPU 完成进程的数量,长作业的进程会占用较长的 CPU 资源,因此会降低吞吐量,相反,短作业的进程会提升系统吞吐量;
- 周转时间:周转时间是进程运行+阻塞时间+等待时间的总和,一个进程的周转时间越小越好;
- 等待时间:这个等待时间不是阻塞状态的时间,而是进程处于就绪队列的时间,等待的时间越长,用户越不满意;
- 响应时间:用户提交请求到系统第一次产生响应所花费的时间,在交互式系统中,响应时间是衡量调度算法好坏的主要标准。
说白了,这么多调度原则,目的就是要使得进程要「快」。
调度算法
不同的调度算法适用的场景也是不同的。
接下来,说说在单核 CPU 系统中常见的调度算法。
01 先来先服务调度算法
最简单的一个调度算法,就是非抢占式的先来先服务(*First Come First Serve, FCFS*)算法了。
顾名思义,先来后到,每次从就绪队列选择最先进入队列的进程,然后一直运行,直到进程退出或被阻塞,才会继续从队列中选择第一个进程接着运行。
这似乎很公平,但是当一个长作业先运行了,那么后面的短作业等待的时间就会很长,不利于短作业。
FCFS 对长作业有利,适用于 CPU 繁忙型作业的系统,而不适用于 I/O 繁忙型作业的系统。
02 最短作业优先调度算法
最短作业优先(*Shortest Job First, SJF*)调度算法同样也是顾名思义,它会优先选择运行时间最短的进程来运行,这有助于提高系统的吞吐量。
这显然对长作业不利,很容易造成一种极端现象。
比如,一个长作业在就绪队列等待运行,而这个就绪队列有非常多的短作业,那么就会使得长作业不断的往后推,周转时间变长,致使长作业长期不会被运行。
03 高响应比优先调度算法
前面的「先来先服务调度算法」和「最短作业优先调度算法」都没有很好的权衡短作业和长作业。
那么,高响应比优先 (*Highest Response Ratio Next, HRRN*)调度算法主要是权衡了短作业和长作业。
每次进行进程调度时,先计算「响应比优先级」,然后把「响应比优先级」最高的进程投入运行,「响应比优先级」的计算公式:
从上面的公式,可以发现:
- 如果两个进程的「等待时间」相同时,「要求的服务时间」越短,「响应比」就越高,这样短作业的进程容易被选中运行;
- 如果两个进程「要求的服务时间」相同时,「等待时间」越长,「响应比」就越高,这就兼顾到了长作业进程,因为进程的响应比可以随时间等待的增加而提高,当其等待时间足够长时,其响应比便可以升到很高,从而获得运行的机会;
TIP
很多人问怎么才能知道一个进程要求服务的时间?这不是不可预知的吗?
对的,这是不可预估的。所以,高响应比优先调度算法是「理想型」的调度算法,现实中是实现不了的。
04 时间片轮转调度算法
最古老、最简单、最公平且使用最广的算法就是时间片轮转(*Round Robin, RR*)调度算法。
每个进程被分配一个时间段,称为时间片(*Quantum*),即允许该进程在该时间段中运行。
- 如果时间片用完,进程还在运行,那么将会把此进程从 CPU 释放出来,并把 CPU 分配给另外一个进程;
- 如果该进程在时间片结束前阻塞或结束,则 CPU 立即进行切换;
另外,时间片的长度就是一个很关键的点:
- 如果时间片设得太短会导致过多的进程上下文切换,降低了 CPU 效率;
- 如果设得太长又可能引起对短作业进程的响应时间变长。将
一般来说,时间片设为 20ms~50ms
通常是一个比较合理的折中值。
05 最高优先级调度算法
前面的「时间片轮转算法」做了个假设,即让所有的进程同等重要,也不偏袒谁,大家的运行时间都一样。
但是,对于多用户计算机系统就有不同的看法了,它们希望调度是有优先级的,即希望调度程序能从就绪队列中选择最高优先级的进程进行运行,这称为最高优先级(*Highest Priority First,HPF*)调度算法。
进程的优先级可以分为,静态优先级和动态优先级:
- 静态优先级:创建进程时候,就已经确定了优先级了,然后整个运行时间优先级都不会变化;
- 动态优先级:根据进程的动态变化调整优先级,比如如果进程运行时间增加,则降低其优先级,如果进程等待时间(就绪队列的等待时间)增加,则升高其优先级,也就是随着时间的推移增加等待进程的优先级。
该算法也有两种处理优先级高的方法,非抢占式和抢占式:
- 非抢占式:当就绪队列中出现优先级高的进程,运行完当前进程,再选择优先级高的进程。
- 抢占式:当就绪队列中出现优先级高的进程,当前进程挂起,调度优先级高的进程运行。
但是依然有缺点,可能会导致低优先级的进程永远不会运行。
06 多级反馈队列调度算法
多级反馈队列(*Multilevel Feedback Queue*)调度算法是「时间片轮转算法」和「最高优先级算法」的综合和发展。
顾名思义:
- 「多级」表示有多个队列,每个队列优先级从高到低,同时优先级越高时间片越短。
- 「反馈」表示如果有新的进程加入优先级高的队列时,立刻停止当前正在运行的进程,转而去运行优先级高的队列;
来看看,它是如何工作的:
- 设置了多个队列,赋予每个队列不同的优先级,每个队列优先级从高到低,同时优先级越高时间片越短;
- 新的进程会被放入到第一级队列的末尾,按先来先服务的原则排队等待被调度,如果在第一级队列规定的时间片没运行完成,则将其转入到第二级队列的末尾,以此类推,直至完成;
- 当较高优先级的队列为空,才调度较低优先级的队列中的进程运行。如果进程运行时,有新进程进入较高优先级的队列,则停止当前运行的进程并将其移入到原队列末尾,接着让较高优先级的进程运行;
可以发现,对于短作业可能可以在第一级队列很快被处理完。对于长作业,如果在第一级队列处理不完,可以移入下次队列等待被执行,虽然等待的时间变长了,但是运行时间也变更长了,所以该算法很好的兼顾了长短作业,同时有较好的响应时间。
看的迷迷糊糊?那我拿去银行办业务的例子,把上面的调度算法串起来,你还不懂,你锤我!
办理业务的客户相当于进程,银行窗口工作人员相当于 CPU。
现在,假设这个银行只有一个窗口(单核 CPU ),那么工作人员一次只能处理一个业务。
那么最简单的处理方式,就是先来的先处理,后面来的就乖乖排队,这就是先来先服务(*FCFS*)调度算法。但是万一先来的这位老哥是来贷款的,这一谈就好几个小时,一直占用着窗口,这样后面的人只能干等,或许后面的人只是想简单的取个钱,几分钟就能搞定,却因为前面老哥办长业务而要等几个小时,你说气不气人?
有客户抱怨了,那我们就要改进,我们干脆优先给那些几分钟就能搞定的人办理业务,这就是短作业优先(*SJF*)调度算法。听起来不错,但是依然还是有个极端情况,万一办理短业务的人非常的多,这会导致长业务的人一直得不到服务,万一这个长业务是个大客户,那不就捡了芝麻丢了西瓜
那就公平起见,现在窗口工作人员规定,每个人我只处理 10 分钟。如果 10 分钟之内处理完,就马上换下一个人。如果没处理完,依然换下一个人,但是客户自己得记住办理到哪个步骤了。这个也就是时间片轮转(*RR*)调度算法。但是如果时间片设置过短,那么就会造成大量的上下文切换,增大了系统开销。如果时间片过长,相当于退化成 FCFS 算法了。
既然公平也可能存在问题,那银行就对客户分等级,分为普通客户、VIP 客户、SVIP 客户。只要高优先级的客户一来,就第一时间处理这个客户,这就是最高优先级(*HPF*)调度算法。但依然也会有极端的问题,万一当天来的全是高级客户,那普通客户不是没有被服务的机会,不把普通客户当人是吗?那我们把优先级改成动态的,如果客户办理业务时间增加,则降低其优先级,如果客户等待时间增加,则升高其优先级。
那有没有兼顾到公平和效率的方式呢?这里介绍一种算法,考虑的还算充分的,多级反馈队列(*MFQ*)调度算法,它是时间片轮转算法和优先级算法的综合和发展。它的工作方式:
- 银行设置了多个排队(就绪)队列,每个队列都有不同的优先级,各个队列优先级从高到低,同时每个队列执行时间片的长度也不同,优先级越高的时间片越短。
- 新客户(进程)来了,先进入第一级队列的末尾,按先来先服务原则排队等待被叫号(运行)。如果时间片用完客户的业务还没办理完成,则让客户进入到下一级队列的末尾,以此类推,直至客户业务办理完成。
- 当第一级队列没人排队时,就会叫号二级队列的客户。如果客户办理业务过程中,有新的客户加入到较高优先级的队列,那么此时办理中的客户需要停止办理,回到原队列的末尾等待再次叫号,因为要把窗口让给刚进入较高优先级队列的客户。
可以发现,对于要办理短业务的客户来说,可以很快的轮到并解决。对于要办理长业务的客户,一下子解决不了,就可以放到下一个队列,虽然等待的时间稍微变长了,但是轮到自己的办理时间也变长了,也可以接受,不会造成极端的现象,可以说是综合上面几种算法的优点。
进程间有哪些通信方式
每个进程的用户地址空间都是独立的,一般而言是不能互相访问的,但内核空间是每个进程都共享的,所以进程之间要通信必须通过内核。
Linux 内核提供了不少进程间通信的机制,我们来一起瞧瞧有哪些?
管道
如果你学过 Linux 命令,那你肯定很熟悉「|
」这个竖线。
$ ps auxf | grep mysql
上面命令行里的「|
」竖线就是一个管道,它的功能是将前一个命令(ps auxf
)的输出,作为后一个命令(grep mysql
)的输入,从这功能描述,可以看出管道传输数据是单向的,如果想相互通信,我们需要创建两个管道才行。
同时,我们得知上面这种管道是没有名字,所以「|
」表示的管道称为匿名管道,用完了就销毁。
管道还有另外一个类型是命名管道,也被叫做 FIFO
,因为数据是先进先出的传输方式。
在使用命名管道前,先需要通过 mkfifo
命令来创建,并且指定管道名字:
$ mkfifo myPipe
myPipe 就是这个管道的名称,基于 Linux 一切皆文件的理念,所以管道也是以文件的方式存在,我们可以用 ls 看一下,这个文件的类型是 p,也就是 pipe(管道) 的意思:
$ ls -l
prw-r--r--. 1 root root 0 Jul 17 02:45 myPipe
接下来,我们往 myPipe 这个管道写入数据:
$ echo "hello" > myPipe // 将数据写进管道
// 停住了 ...
你操作了后,你会发现命令执行后就停在这了,这是因为管道里的内容没有被读取,只有当管道里的数据被读完后,命令才可以正常退出。
于是,我们执行另外一个命令来读取这个管道里的数据:
$ cat < myPipe // 读取管道里的数据
hello
可以看到,管道里的内容被读取出来了,并打印在了终端上,另外一方面,echo 那个命令也正常退出了。
我们可以看出,管道这种通信方式效率低,不适合进程间频繁地交换数据。当然,它的好处,自然就是简单,同时也我们很容易得知管道里的数据已经被另一个进程读取了。
那管道如何创建呢,背后原理是什么?
匿名管道的创建,需要通过下面这个系统调用:
int pipe(int fd[2])
这里表示创建一个匿名管道,并返回了两个描述符,一个是管道的读取端描述符 fd[0]
,另一个是管道的写入端描述符 fd[1]
。注意,这个匿名管道是特殊的文件,只存在于内存,不存于文件系统中。
其实,所谓的管道,就是内核里面的一串缓存。从管道的一段写入的数据,实际上是缓存在内核中的,另一端读取,也就是从内核中读取这段数据。另外,管道传输的数据是无格式的流且大小受限。
看到这,你可能会有疑问了,这两个描述符都是在一个进程里面,并没有起到进程间通信的作用,怎么样才能使得管道是跨过两个进程的呢?
我们可以使用 fork
创建子进程,创建的子进程会复制父进程的文件描述符,这样就做到了两个进程各有两个「 fd[0]
与 fd[1]
」,两个进程就可以通过各自的 fd 写入和读取同一个管道文件实现跨进程通信了。
管道只能一端写入,另一端读出,所以上面这种模式容易造成混乱,因为父进程和子进程都可以同时写入,也都可以读出。那么,为了避免这种情况,通常的做法是:
- 父进程关闭读取的 fd[0],只保留写入的 fd[1];
- 子进程关闭写入的 fd[1],只保留读取的 fd[0];
所以说如果需要双向通信,则应该创建两个管道。
到这里,我们仅仅解析了使用管道进行父进程与子进程之间的通信,但是在我们 shell 里面并不是这样的。
在 shell 里面执行 A | B
命令的时候,A 进程和 B 进程都是 shell 创建出来的子进程,A 和 B 之间不存在父子关系,它俩的父进程都是 shell。
所以说,在 shell 里通过「|
」匿名管道将多个命令连接在一起,实际上也就是创建了多个子进程,那么在我们编写 shell 脚本时,能使用一个管道搞定的事情,就不要多用一个管道,这样可以减少创建子进程的系统开销。
我们可以得知,对于匿名管道,它的通信范围是存在父子关系的进程。因为管道没有实体,也就是没有管道文件,只能通过 fork 来复制父进程 fd 文件描述符,来达到通信的目的。
另外,对于命名管道,它可以在不相关的进程间也能相互通信。因为命令管道,提前创建了一个类型为管道的设备文件,在进程里只要使用这个设备文件,就可以相互通信。
不管是匿名管道还是命名管道,进程写入的数据都是缓存在内核中,另一个进程读取数据时候自然也是从内核中获取,同时通信数据都遵循先进先出原则,不支持 lseek 之类的文件定位操作。
消息队列
前面说到管道的通信方式是效率低的,因此管道不适合进程间频繁地交换数据。
对于这个问题,消息队列的通信模式就可以解决。比如,A 进程要给 B 进程发送消息,A 进程把数据放在对应的消息队列后就可以正常返回了,B 进程需要的时候再去读取数据就可以了。同理,B 进程要给 A 进程发送消息也是如此。
再来,消息队列是保存在内核中的消息链表,在发送数据时,会分成一个一个独立的数据单元,也就是消息体(数据块),消息体是用户自定义的数据类型,消息的发送方和接收方要约定好消息体的数据类型,所以每个消息体都是固定大小的存储块,不像管道是无格式的字节流数据。如果进程从消息队列中读取了消息体,内核就会把这个消息体删除。
消息队列生命周期随内核,如果没有释放消息队列或者没有关闭操作系统,消息队列会一直存在,而前面提到的匿名管道的生命周期,是随进程的创建而建立,随进程的结束而销毁。
消息这种模型,两个进程之间的通信就像平时发邮件一样,你来一封,我回一封,可以频繁沟通了。
但邮件的通信方式存在不足的地方有两点,一是通信不及时,二是附件也有大小限制,这同样也是消息队列通信不足的点。
消息队列不适合比较大数据的传输,因为在内核中每个消息体都有一个最大长度的限制,同时所有队列所包含的全部消息体的总长度也是有上限。在 Linux 内核中,会有两个宏定义 MSGMAX
和 MSGMNB
,它们以字节为单位,分别定义了一条消息的最大长度和一个队列的最大长度。
消息队列通信过程中,存在用户态与内核态之间的数据拷贝开销,因为进程写入数据到内核中的消息队列时,会发生从用户态拷贝数据到内核态的过程,同理另一进程读取内核中的消息数据时,会发生从内核态拷贝数据到用户态的过程。
共享内存
消息队列的读取和写入的过程,都会有发生用户态与内核态之间的消息拷贝过程。那共享内存的方式,就很好的解决了这一问题。
现代操作系统,对于内存管理,采用的是虚拟内存技术,也就是每个进程都有自己独立的虚拟内存空间,不同进程的虚拟内存映射到不同的物理内存中。所以,即使进程 A 和 进程 B 的虚拟地址是一样的,其实访问的是不同的物理内存地址,对于数据的增删查改互不影响。
共享内存的机制,就是拿出一块虚拟地址空间来,映射到相同的物理内存中。这样这个进程写入的东西,另外一个进程马上就能看到了,都不需要拷贝来拷贝去,传来传去,大大提高了进程间通信的速度。
信号量
用了共享内存通信方式,带来新的问题,那就是如果多个进程同时修改同一个共享内存,很有可能就冲突了。例如两个进程都同时写一个地址,那先写的那个进程会发现内容被别人覆盖了。
为了防止多进程竞争共享资源,而造成的数据错乱,所以需要保护机制,使得共享的资源,在任意时刻只能被一个进程访问。正好,信号量就实现了这一保护机制。
信号量其实是一个整型的计数器,主要用于实现进程间的互斥与同步,而不是用于缓存进程间通信的数据。
信号量表示资源的数量,控制信号量的方式有两种原子操作:
- 一个是 P 操作,这个操作会把信号量减去 1,相减后如果信号量 < 0,则表明资源已被占用,进程需阻塞等待;相减后如果信号量 >= 0,则表明还有资源可使用,进程可正常继续执行。
- 另一个是 V 操作,这个操作会把信号量加上 1,相加后如果信号量 <= 0,则表明当前有阻塞中的进程,于是会将该进程唤醒运行;相加后如果信号量 > 0,则表明当前没有阻塞中的进程;
P 操作是用在进入共享资源之前,V 操作是用在离开共享资源之后,这两个操作是必须成对出现的。
接下来,举个例子,如果要使得两个进程互斥访问共享内存,我们可以初始化信号量为 1
。
具体的过程如下:
- 进程 A 在访问共享内存前,先执行了 P 操作,由于信号量的初始值为 1,故在进程 A 执行 P 操作后信号量变为 0,表示共享资源可用,于是进程 A 就可以访问共享内存。
- 若此时,进程 B 也想访问共享内存,执行了 P 操作,结果信号量变为了 -1,这就意味着临界资源已被占用,因此进程 B 被阻塞。
- 直到进程 A 访问完共享内存,才会执行 V 操作,使得信号量恢复为 0,接着就会唤醒阻塞中的线程 B,使得进程 B 可以访问共享内存,最后完成共享内存的访问后,执行 V 操作,使信号量恢复到初始值 1。
可以发现,信号初始化为 1
,就代表着是互斥信号量,它可以保证共享内存在任何时刻只有一个进程在访问,这就很好的保护了共享内存。
另外,在多进程里,每个进程并不一定是顺序执行的,它们基本是以各自独立的、不可预知的速度向前推进,但有时候我们又希望多个进程能密切合作,以实现一个共同的任务。
例如,进程 A 是负责生产数据,而进程 B 是负责读取数据,这两个进程是相互合作、相互依赖的,进程 A 必须先生产了数据,进程 B 才能读取到数据,所以执行是有前后顺序的。
那么这时候,就可以用信号量来实现多进程同步的方式,我们可以初始化信号量为 0
。
具体过程:
- 如果进程 B 比进程 A 先执行了,那么执行到 P 操作时,由于信号量初始值为 0,故信号量会变为 -1,表示进程 A 还没生产数据,于是进程 B 就阻塞等待;
- 接着,当进程 A 生产完数据后,执行了 V 操作,就会使得信号量变为 0,于是就会唤醒阻塞在 P 操作的进程 B;
- 最后,进程 B 被唤醒后,意味着进程 A 已经生产了数据,于是进程 B 就可以正常读取数据了。
可以发现,信号初始化为 0
,就代表着是同步信号量,它可以保证进程 A 应在进程 B 之前执行。
信号
上面说的进程间通信,都是常规状态下的工作模式。对于异常情况下的工作模式,就需要用「信号」的方式来通知进程。
信号跟信号量虽然名字相似度 66.66%,但两者用途完全不一样,就好像 Java 和 JavaScript 的区别。
在 Linux 操作系统中, 为了响应各种各样的事件,提供了几十种信号,分别代表不同的意义。我们可以通过 kill -l
命令,查看所有的信号:
$ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3
38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12
53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7
58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX
运行在 shell 终端的进程,我们可以通过键盘输入某些组合键的时候,给进程发送信号。例如
- Ctrl+C 产生
SIGINT
信号,表示终止该进程; - Ctrl+Z 产生
SIGTSTP
信号,表示停止该进程,但还未结束;
如果进程在后台运行,可以通过 kill
命令的方式给进程发送信号,但前提需要知道运行中的进程 PID 号,例如:
- kill -9 1050 ,表示给 PID 为 1050 的进程发送
SIGKILL
信号,用来立即结束该进程;
所以,信号事件的来源主要有硬件来源(如键盘 Cltr+C )和软件来源(如 kill 命令)。
信号是进程间通信机制中唯一的异步通信机制,因为可以在任何时候发送信号给某一进程,一旦有信号产生,我们就有下面这几种,用户进程对信号的处理方式。
1.执行默认操作。Linux 对每种信号都规定了默认操作,例如,上面列表中的 SIGTERM 信号,就是终止进程的意思。
2.捕捉信号。我们可以为信号定义一个信号处理函数。当信号发生时,我们就执行相应的信号处理函数。
3.忽略信号。当我们不希望处理某些信号的时候,就可以忽略该信号,不做任何处理。有两个信号是应用进程无法捕捉和忽略的,即 SIGKILL
和 SEGSTOP
,它们用于在任何时候中断或结束某一进程。
Socket
前面提到的管道、消息队列、共享内存、信号量和信号都是在同一台主机上进行进程间通信,那要想跨网络与不同主机上的进程之间通信,就需要 Socket 通信了。
实际上,Socket 通信不仅可以跨网络与不同主机的进程间通信,还可以在同主机上进程间通信。
我们来看看创建 socket 的系统调用:
int socket(int domain, int type, int protocal)
三个参数分别代表:
- domain 参数用来指定协议族,比如 AF_INET 用于 IPV4、AF_INET6 用于 IPV6、AF_LOCAL/AF_UNIX 用于本机;
- type 参数用来指定通信特性,比如 SOCK_STREAM 表示的是字节流,对应 TCP、SOCK_DGRAM 表示的是数据报,对应 UDP、SOCK_RAW 表示的是原始套接字;
- protocal 参数原本是用来指定通信协议的,但现在基本废弃。因为协议已经通过前面两个参数指定完成,protocol 目前一般写成 0 即可;
根据创建 socket 类型的不同,通信的方式也就不同:
- 实现 TCP 字节流通信: socket 类型是 AF_INET 和 SOCK_STREAM;
- 实现 UDP 数据报通信:socket 类型是 AF_INET 和 SOCK_DGRAM;
- 实现本地进程间通信: 「本地字节流 socket 」类型是 AF_LOCAL 和 SOCK_STREAM,「本地数据报 socket 」类型是 AF_LOCAL 和 SOCK_DGRAM。另外,AF_UNIX 和 AF_LOCAL 是等价的,所以 AF_UNIX 也属于本地 socket;
接下来,简单说一下这三种通信的编程模式。
针对 TCP 协议通信的 socket 编程模型
- 服务端和客户端初始化
socket
,得到文件描述符; - 服务端调用
bind
,将绑定在 IP 地址和端口; - 服务端调用
listen
,进行监听; - 服务端调用
accept
,等待客户端连接; - 客户端调用
connect
,向服务器端的地址和端口发起连接请求; - 服务端
accept
返回用于传输的socket
的文件描述符; - 客户端调用
write
写入数据;服务端调用read
读取数据; - 客户端断开连接时,会调用
close
,那么服务端read
读取数据的时候,就会读取到了EOF
,待处理完数据后,服务端调用close
,表示连接关闭。
这里需要注意的是,服务端调用 accept
时,连接成功了会返回一个已完成连接的 socket,后续用来传输数据。
所以,监听的 socket 和真正用来传送数据的 socket,是「两个」 socket,一个叫作监听 socket,一个叫作已完成连接 socket。
成功连接建立之后,双方开始通过 read 和 write 函数来读写数据,就像往一个文件流里面写东西一样。
针对 UDP 协议通信的 socket 编程模型
UDP 是没有连接的,所以不需要三次握手,也就不需要像 TCP 调用 listen 和 connect,但是 UDP 的交互仍然需要 IP 地址和端口号,因此也需要 bind。
对于 UDP 来说,不需要要维护连接,那么也就没有所谓的发送方和接收方,甚至都不存在客户端和服务端的概念,只要有一个 socket 多台机器就可以任意通信,因此每一个 UDP 的 socket 都需要 bind。
另外,每次通信时,调用 sendto 和 recvfrom,都要传入目标主机的 IP 地址和端口。
针对本地进程间通信的 socket 编程模型
本地 socket 被用于在同一台主机上进程间通信的场景:
- 本地 socket 的编程接口和 IPv4 、IPv6 套接字编程接口是一致的,可以支持「字节流」和「数据报」两种协议;
- 本地 socket 的实现效率大大高于 IPv4 和 IPv6 的字节流、数据报 socket 实现;
对于本地字节流 socket,其 socket 类型是 AF_LOCAL 和 SOCK_STREAM。
对于本地数据报 socket,其 socket 类型是 AF_LOCAL 和 SOCK_DGRAM。
本地字节流 socket 和 本地数据报 socket 在 bind 的时候,不像 TCP 和 UDP 要绑定 IP 地址和端口,而是绑定一个本地文件,这也就是它们之间的最大区别。
总结
由于每个进程的用户空间都是独立的,不能相互访问,这时就需要借助内核空间来实现进程间通信,原因很简单,每个进程都是共享一个内核空间。
Linux 内核提供了不少进程间通信的方式,其中最简单的方式就是管道,管道分为「匿名管道」和「命名管道」。
匿名管道顾名思义,它没有名字标识,匿名管道是特殊文件只存在于内存,没有存在于文件系统中,shell 命令中的「|
」竖线就是匿名管道,通信的数据是无格式的流并且大小受限,通信的方式是单向的,数据只能在一个方向上流动,如果要双向通信,需要创建两个管道,再来匿名管道是只能用于存在父子关系的进程间通信,匿名管道的生命周期随着进程创建而建立,随着进程终止而消失。
命名管道突破了匿名管道只能在亲缘关系进程间的通信限制,因为使用命名管道的前提,需要在文件系统创建一个类型为 p 的设备文件,那么毫无关系的进程就可以通过这个设备文件进行通信。另外,不管是匿名管道还是命名管道,进程写入的数据都是缓存在内核中,另一个进程读取数据时候自然也是从内核中获取,同时通信数据都遵循先进先出原则,不支持 lseek 之类的文件定位操作。
消息队列克服了管道通信的数据是无格式的字节流的问题,消息队列实际上是保存在内核的「消息链表」,消息队列的消息体是可以用户自定义的数据类型,发送数据时,会被分成一个一个独立的消息体,当然接收数据时,也要与发送方发送的消息体的数据类型保持一致,这样才能保证读取的数据是正确的。消息队列通信的速度不是最及时的,毕竟每次数据的写入和读取都需要经过用户态与内核态之间的拷贝过程。
共享内存可以解决消息队列通信中用户态与内核态之间数据拷贝过程带来的开销,它直接分配一个共享空间,每个进程都可以直接访问,就像访问进程自己的空间一样快捷方便,不需要陷入内核态或者系统调用,大大提高了通信的速度,享有最快的进程间通信方式之名。但是便捷高效的共享内存通信,带来新的问题,多进程竞争同个共享资源会造成数据的错乱。
那么,就需要信号量来保护共享资源,以确保任何时刻只能有一个进程访问共享资源,这种方式就是互斥访问。信号量不仅可以实现访问的互斥性,还可以实现进程间的同步,信号量其实是一个计数器,表示的是资源个数,其值可以通过两个原子操作来控制,分别是 P 操作和 V 操作。
与信号量名字很相似的叫信号,它俩名字虽然相似,但功能一点儿都不一样。信号是异步通信机制,信号可以在应用进程和内核之间直接交互,内核也可以利用信号来通知用户空间的进程发生了哪些系统事件,信号事件的来源主要有硬件来源(如键盘 Cltr+C )和软件来源(如 kill 命令),一旦有信号发生,进程有三种方式响应信号 1. 执行默认操作、2. 捕捉信号、3. 忽略信号。有两个信号是应用进程无法捕捉和忽略的,即 SIGKILL
和 SIGSTOP
,这是为了方便我们能在任何时候结束或停止某个进程。
前面说到的通信机制,都是工作于同一台主机,如果要与不同主机的进程间通信,那么就需要 Socket 通信了。Socket 实际上不仅用于不同的主机进程间通信,还可以用于本地主机进程间通信,可根据创建 Socket 的类型不同,分为三种常见的通信方式,一个是基于 TCP 协议的通信方式,一个是基于 UDP 协议的通信方式,一个是本地进程间通信方式。
以上,就是进程间通信的主要机制了。你可能会问了,那线程通信间的方式呢?
同个进程下的线程之间都是共享进程的资源,只要是共享变量都可以做到线程间通信,比如全局变量,所以对于线程间关注的不是通信方式,而是关注多线程竞争共享资源的问题,信号量也同样可以在线程间实现互斥与同步:
- 互斥的方式,可保证任意时刻只有一个线程访问共享资源;
- 同步的方式,可保证线程 A 应在线程 B 之前执行;
多线程冲突了怎么办?
接下来,用 30+
张图,带大家走进操作系统中避免多线程资源竞争的互斥、同步的方法。
竞争与协作
在单核 CPU 系统里,为了实现多个程序同时运行的假象,操作系统通常以时间片调度的方式,让每个进程执行每次执行一个时间片,时间片用完了,就切换下一个进程运行,由于这个时间片的时间很短,于是就造成了「并发」的现象。
另外,操作系统也为每个进程创建巨大、私有的虚拟内存的假象,这种地址空间的抽象让每个程序好像拥有自己的内存,而实际上操作系统在背后秘密地让多个地址空间「复用」物理内存或者磁盘。
如果一个程序只有一个执行流程,也代表它是单线程的。当然一个程序可以有多个执行流程,也就是所谓的多线程程序,线程是调度的基本单位,进程则是资源分配的基本单位。
所以,线程之间是可以共享进程的资源,比如代码段、堆空间、数据段、打开的文件等资源,但每个线程都有自己独立的栈空间。
那么问题就来了,多个线程如果竞争共享资源,如果不采取有效的措施,则会造成共享数据的混乱。
我们做个小实验,创建两个线程,它们分别对共享变量 i
自增 1
执行 10000
次,如下代码(虽然说是 C++ 代码,但是没学过 C++ 的同学也是看到懂的):
按理来说,i
变量最后的值应该是 20000
,但很不幸,并不是如此。我们对上面的程序执行一下:
运行了两次,发现出现了 i
值的结果是 15173
,也会出现 20000
的 i 值结果。
每次运行不但会产生错误,而且得到不同的结果。在计算机里是不能容忍的,虽然是小概率出现的错误,但是小概率事件它一定是会发生的,「墨菲定律」大家都懂吧。
为什么会发生这种情况?
为了理解为什么会发生这种情况,我们必须了解编译器为更新计数器 i
变量生成的代码序列,也就是要了解汇编指令的执行顺序。
在这个例子中,我们只是想给 i
加上数字 1,那么它对应的汇编指令执行过程是这样的:
可以发现,只是单纯给 i
加上数字 1,在 CPU 运行的时候,实际上要执行 3
条指令。
设想我们的线程 1 进入这个代码区域,它将 i 的值(假设此时是 50 )从内存加载到它的寄存器中,然后它向寄存器加 1,此时在寄存器中的 i 值是 51。
现在,一件不幸的事情发生了:时钟中断发生。因此,操作系统将当前正在运行的线程的状态保存到线程的线程控制块 TCB。
现在更糟的事情发生了,线程 2 被调度运行,并进入同一段代码。它也执行了第一条指令,从内存获取 i 值并将其放入到寄存器中,此时内存中 i 的值仍为 50,因此线程 2 寄存器中的 i 值也是 50。假设线程 2 执行接下来的两条指令,将寄存器中的 i 值 + 1,然后将寄存器中的 i 值保存到内存中,于是此时全局变量 i 值是 51。
最后,又发生一次上下文切换,线程 1 恢复执行。还记得它已经执行了两条汇编指令,现在准备执行最后一条指令。回忆一下, 线程 1 寄存器中的 i 值是51,因此,执行最后一条指令后,将值保存到内存,全局变量 i 的值再次被设置为 51。
简单来说,增加 i (值为 50 )的代码被运行两次,按理来说,最后的 i 值应该是 52,但是由于不可控的调度,导致最后 i 值却是 51。
针对上面线程 1 和线程 2 的执行过程,我画了一张流程图,会更明确一些:
互斥的概念
上面展示的情况称为竞争条件(race condition),当多线程相互竞争操作共享变量时,由于运气不好,即在执行过程中发生了上下文切换,我们得到了错误的结果,事实上,每次运行都可能得到不同的结果,因此输出的结果存在不确定性(indeterminate)。
由于多线程执行操作共享变量的这段代码可能会导致竞争状态,因此我们将此段代码称为临界区(critical section),它是访问共享资源的代码片段,一定不能给多线程同时执行。
我们希望这段代码是互斥(mutualexclusion)的,也就说保证一个线程在临界区执行时,其他线程应该被阻止进入临界区,说白了,就是这段代码执行过程中,最多只能出现一个线程。
另外,说一下互斥也并不是只针对多线程。在多进程竞争共享资源的时候,也同样是可以使用互斥的方式来避免资源竞争造成的资源混乱。
同步的概念
互斥解决了并发进程/线程对临界区的使用问题。这种基于临界区控制的交互作用是比较简单的,只要一个进程/线程进入了临界区,其他试图想进入临界区的进程/线程都会被阻塞着,直到第一个进程/线程离开了临界区。
我们都知道在多线程里,每个线程并不一定是顺序执行的,它们基本是以各自独立的、不可预知的速度向前推进,但有时候我们又希望多个线程能密切合作,以实现一个共同的任务。
例子,线程 1 是负责读入数据的,而线程 2 是负责处理数据的,这两个线程是相互合作、相互依赖的。线程 2 在没有收到线程 1 的唤醒通知时,就会一直阻塞等待,当线程 1 读完数据需要把数据传给线程 2 时,线程 1 会唤醒线程 2,并把数据交给线程 2 处理。
所谓同步,就是并发进程/线程在一些关键点上可能需要互相等待与互通消息,这种相互制约的等待与互通信息称为进程/线程同步。
举个生活的同步例子,你肚子饿了想要吃饭,你叫妈妈早点做菜,妈妈听到后就开始做菜,但是在妈妈没有做完饭之前,你必须阻塞等待,等妈妈做完饭后,自然会通知你,接着你吃饭的事情就可以进行了。
注意,同步与互斥是两种不同的概念:
- 同步就好比:「操作 A 应在操作 B 之前执行」,「操作 C 必须在操作 A 和操作 B 都完成之后才能执行」等;
- 互斥就好比:「操作 A 和操作 B 不能在同一时刻执行」;
互斥与同步的实现和使用
在进程/线程并发执行的过程中,进程/线程之间存在协作的关系,例如有互斥、同步的关系。
为了实现进程/线程间正确的协作,操作系统必须提供实现进程协作的措施和方法,主要的方法有两种:
- 锁:加锁、解锁操作;
- 信号量:P、V 操作;
这两个都可以方便地实现进程/线程互斥,而信号量比锁的功能更强一些,它还可以方便地实现进程/线程同步。
锁
使用加锁操作和解锁操作可以解决并发线程/进程的互斥问题。
任何想进入临界区的线程,必须先执行加锁操作。若加锁操作顺利通过,则线程可进入临界区;在完成对临界资源的访问后再执行解锁操作,以释放该临界资源。
根据锁的实现不同,可以分为「忙等待锁」和「无忙等待锁」。
我们先来看看「忙等待锁」的实现
在说明「忙等待锁」的实现之前,先介绍现代 CPU 体系结构提供的特殊原子操作指令 —— 测试和置位(Test-and-Set)指令。
如果用 C 代码表示 Test-and-Set 指令,形式如下:
测试并设置指令做了下述事情:
- 把
old_ptr
更新为new
的新值 - 返回
old_ptr
的旧值;
当然,关键是这些代码是原子执行。因为既可以测试旧值,又可以设置新值,所以我们把这条指令叫作「测试并设置」。
那什么是原子操作呢?原子操作就是要么全部执行,要么都不执行,不能出现执行到一半的中间状态
我们可以运用 Test-and-Set 指令来实现「忙等待锁」,代码如下:
我们来确保理解为什么这个锁能工作:
-
第一个场景是,首先假设一个线程在运行,调用
lock()
,没有其他线程持有锁,所以flag
是 0。当调用TestAndSet(flag, 1)
方法,返回 0,线程会跳出 while 循环,获取锁。同时也会原子的设置 flag 为1,标志锁已经被持有。当线程离开临界区,调用unlock()
将flag
清理为 0。 -
第二种场景是,当某一个线程已经持有锁(即
flag
为1)。本线程调用lock()
,然后调用TestAndSet(flag, 1)
,这一次返回 1。只要另一个线程一直持有锁,TestAndSet()
会重复返回 1,本线程会一直忙等。当flag
终于被改为 0,本线程会调用TestAndSet()
,返回 0 并且原子地设置为 1,从而获得锁,进入临界区。
很明显,当获取不到锁时,线程就会一直 while 循环,不做任何事情,所以就被称为「忙等待锁」,也被称为自旋锁(spin lock)。
这是最简单的一种锁,一直自旋,利用 CPU 周期,直到锁可用。在单处理器上,需要抢占式的调度器(即不断通过时钟中断一个线程,运行其他线程)。否则,自旋锁在单 CPU 上无法使用,因为一个自旋的线程永远不会放弃 CPU。
再来看看「无等待锁」的实现
无等待锁顾明思议就是获取不到锁的时候,不用自旋。
既然不想自旋,那当没获取到锁的时候,就把当前线程放入到锁的等待队列,然后执行调度程序,把 CPU 让给其他线程执行。
本次只是提出了两种简单锁的实现方式。当然,在具体操作系统实现中,会更复杂,但也离不开本例子两个基本元素。
如果你想要对锁的更进一步理解,推荐大家可以看《操作系统导论》第 28 章锁的内容,这本书在「微信读书」就可以免费看。
信号量
信号量是操作系统提供的一种协调共享资源访问的方法。
通常信号量表示资源的数量,对应的变量是一个整型(sem
)变量。
另外,还有两个原子操作的系统调用函数来控制信号量的,分别是:
- P 操作:将
sem
减1
,相减后,如果sem < 0
,则进程/线程进入阻塞等待,否则继续,表明 P 操作可能会阻塞; - V 操作:将
sem
加1
,相加后,如果sem <= 0
,唤醒一个等待中的进程/线程,表明 V 操作不会阻塞;
TIP
很多人问,V 操作 中 sem <= 0 的判断是不是写反了?
没写反,我举个例子,如果 sem = 1,有三个线程进行了 P 操作:
- 第一个线程 P 操作后,sem = 0;
- 第二个线程 P 操作后,sem = -1;
- 第三个线程 P 操作后,sem = -2;
这时,第一个线程执行 V 操作后, sem 是 -1,因为 sem <= 0,所以要唤醒第二或第三个线程。
P 操作是用在进入临界区之前,V 操作是用在离开临界区之后,这两个操作是必须成对出现的。
举个类比,2 个资源的信号量,相当于 2 条火车轨道,PV 操作如下图过程:
操作系统是如何实现 PV 操作的呢?
信号量数据结构与 PV 操作的算法描述如下图:
PV 操作的函数是由操作系统管理和实现的,所以操作系统已经使得执行 PV 函数时是具有原子性的。
PV 操作如何使用的呢?
信号量不仅可以实现临界区的互斥访问控制,还可以线程间的事件同步。
我们先来说说如何使用信号量实现临界区的互斥访问。
为每类共享资源设置一个信号量 s
,其初值为 1
,表示该临界资源未被占用。
只要把进入临界区的操作置于 P(s)
和 V(s)
之间,即可实现进程/线程互斥:
此时,任何想进入临界区的线程,必先在互斥信号量上执行 P 操作,在完成对临界资源的访问后再执行 V 操作。由于互斥信号量的初始值为 1,故在第一个线程执行 P 操作后 s 值变为 0,表示临界资源为空闲,可分配给该线程,使之进入临界区。
若此时又有第二个线程想进入临界区,也应先执行 P 操作,结果使 s 变为负值,这就意味着临界资源已被占用,因此,第二个线程被阻塞。
并且,直到第一个线程执行 V 操作,释放临界资源而恢复 s 值为 0 后,才唤醒第二个线程,使之进入临界区,待它完成临界资源的访问后,又执行 V 操作,使 s 恢复到初始值 1。
对于两个并发线程,互斥信号量的值仅取 1、0 和 -1 三个值,分别表示:
- 如果互斥信号量为 1,表示没有线程进入临界区;
- 如果互斥信号量为 0,表示有一个线程进入临界区;
- 如果互斥信号量为 -1,表示一个线程进入临界区,另一个线程等待进入。
通过互斥信号量的方式,就能保证临界区任何时刻只有一个线程在执行,就达到了互斥的效果。
再来,我们说说如何使用信号量实现事件同步。
同步的方式是设置一个信号量,其初值为 0
。
我们把前面的「吃饭-做饭」同步的例子,用代码的方式实现一下:
妈妈一开始询问儿子要不要做饭时,执行的是 P(s1)
,相当于询问儿子需不需要吃饭,由于 s1
初始值为 0,此时 s1
变成 -1,表明儿子不需要吃饭,所以妈妈线程就进入等待状态。
当儿子肚子饿时,执行了 V(s1)
,使得 s1
信号量从 -1 变成 0,表明此时儿子需要吃饭了,于是就唤醒了阻塞中的妈妈线程,妈妈线程就开始做饭。
接着,儿子线程执行了 P(s2)
,相当于询问妈妈饭做完了吗,由于 s2
初始值是 0,则此时 s2
变成 -1,说明妈妈还没做完饭,儿子线程就等待状态。
最后,妈妈终于做完饭了,于是执行 V(s2)
,s2
信号量从 -1 变回了 0,于是就唤醒等待中的儿子线程,唤醒后,儿子线程就可以进行吃饭了。
生产者-消费者问题
生产者-消费者问题描述:
- 生产者在生成数据后,放在一个缓冲区中;
- 消费者从缓冲区取出数据处理;
- 任何时刻,只能有一个生产者或消费者可以访问缓冲区;
我们对问题分析可以得出:
- 任何时刻只能有一个线程操作缓冲区,说明操作缓冲区是临界代码,需要互斥;
- 缓冲区空时,消费者必须等待生产者生成数据;缓冲区满时,生产者必须等待消费者取出数据。说明生产者和消费者需要同步。
那么我们需要三个信号量,分别是:
- 互斥信号量
mutex
:用于互斥访问缓冲区,初始化值为 1; - 资源信号量
fullBuffers
:用于消费者询问缓冲区是否有数据,有数据则读取数据,初始化值为 0(表明缓冲区一开始为空); - 资源信号量
emptyBuffers
:用于生产者询问缓冲区是否有空位,有空位则生成数据,初始化值为 n (缓冲区大小);
具体的实现代码:
如果消费者线程一开始执行 P(fullBuffers)
,由于信号量 fullBuffers
初始值为 0,则此时 fullBuffers
的值从 0 变为 -1,说明缓冲区里没有数据,消费者只能等待。
接着,轮到生产者执行 P(emptyBuffers)
,表示减少 1 个空槽,如果当前没有其他生产者线程在临界区执行代码,那么该生产者线程就可以把数据放到缓冲区,放完后,执行 V(fullBuffers)
,信号量 fullBuffers
从 -1 变成 0,表明有「消费者」线程正在阻塞等待数据,于是阻塞等待的消费者线程会被唤醒。
消费者线程被唤醒后,如果此时没有其他消费者线程在读数据,那么就可以直接进入临界区,从缓冲区读取数据。最后,离开临界区后,把空槽的个数 + 1。
经典同步问题
哲学家就餐问题
当初我在校招的时候,面试官也问过「哲学家就餐」这道题目,我当时听的一脸懵逼,无论面试官怎么讲述这个问题,我也始终没听懂,就莫名其妙的说这个问题会「死锁」。
当然,我这回答槽透了,所以当场 game over,残酷又悲惨故事,就不多说了,反正当时菜就是菜。
时至今日,看我来图解这道题。
先来看看哲学家就餐的问题描述:
5
个老大哥哲学家,闲着没事做,围绕着一张圆桌吃面;- 巧就巧在,这个桌子只有
5
支叉子,每两个哲学家之间放一支叉子; - 哲学家围在一起先思考,思考中途饿了就会想进餐;
- 奇葩的是,这些哲学家要两支叉子才愿意吃面,也就是需要拿到左右两边的叉子才进餐;
- 吃完后,会把两支叉子放回原处,继续思考;
那么问题来了,如何保证哲 学家们的动作有序进行,而不会出现有人永远拿不到叉子呢?
方案一
我们用信号量的方式,也就是 PV 操作来尝试解决它,代码如下:
上面的程序,好似很自然。拿起叉子用 P 操作,代表有叉子就直接用,没有叉子时就等待其他哲学家放回叉子。
不过,这种解法存在一个极端的问题:假设五位哲学家同时拿起左边的叉子,桌面上就没有叉子了, 这样就没有人能够拿到他们右边的叉子,也就说每一位哲学家都会在 P(fork[(i + 1) % N ])
这条语句阻塞了,很明显这发生了死锁的现象。
方案二
既然「方案一」会发生同时竞争左边叉子导致死锁的现象,那么我们就在拿叉子前,加个互斥信号量,代码如下:
上面程序中的互斥信号量的作用就在于,只要有一个哲学家进入了「临界区」,也就是准备要拿叉子时,其他哲学家都不能动,只有这位哲学家用完叉子了,才能轮到下一个哲学家进餐。
方案二虽然能让哲学家们按顺序吃饭,但是每次进餐只能有一位哲学家,而桌面上是有 5 把叉子,按道理是能可以有两个哲学家同时进餐的,所以从效率角度上,这不是最好的解决方案。
方案三
那既然方案二使用互斥信号量,会导致只能允许一个哲学家就餐,那么我们就不用它。
另外,方案一的问题在于,会出现所有哲学家同时拿左边刀叉的可能性,那我们就避免哲学家可以同时拿左边的刀叉,采用分支结构,根据哲学家的编号的不同,而采取不同的动作。
即让偶数编号的哲学家「先拿左边的叉子后拿右边的叉子」,奇数编号的哲学家「先拿右边的叉子后拿左边的叉子」。
上面的程序,在 P 操作时,根据哲学家的编号不同,拿起左右两边叉子的顺序不同。另外,V 操作是不需要分支的,因为 V 操作是不会阻塞的。
方案三即不会出现死锁,也可以两人同时进餐。
方案四
在这里再提出另外一种可行的解决方案,我们用一个数组 state 来记录每一位哲学家的三个状态,分别是在进餐状态、思考状态、饥饿状态(正在试图拿叉子)。
那么,一个哲学家只有在两个邻居都没有进餐时,才可以进入进餐状态。
第 i
个哲学家的左邻右舍,则由宏 LEFT
和 RIGHT
定义:
- LEFT : ( i + 5 - 1 ) % 5
- RIGHT : ( i + 1 ) % 5
比如 i 为 2,则 LEFT
为 1,RIGHT
为 3。
具体代码实现如下:
上面的程序使用了一个信号量数组,每个信号量对应一位哲学家,这样在所需的叉子被占用时,想进餐的哲学家就被阻塞。
注意,每个进程/线程将 smart_person
函数作为主代码运行,而其他 take_forks
、put_forks
和 test
只是普通的函数,而非单独的进程/线程。
方案四同样不会出现死锁,也可以两人同时进餐。
读者-写者问题
前面的「哲学家进餐问题」对于互斥访问有限的竞争问题(如 I/O 设备)一类的建模过程十分有用。
另外,还有个著名的问题是「读者-写者」,它为数据库访问建立了一个模型。
读者只会读取数据,不会修改数据,而写者即可以读也可以修改数据。
读者-写者的问题描述:
- 「读-读」允许:同一时刻,允许多个读者同时读
- 「读-写」互斥:没有写者时读者才能读,没有读者时写者才能写
- 「写-写」互斥:没有其他写者时,写者才能写
接下来,提出几个解决方案来分析分析。
方案一
使用信号量的方式来尝试解决:
- 信号量
wMutex
:控制写操作的互斥信号量,初始值为 1 ; - 读者计数
rCount
:正在进行读操作的读者个数,初始化为 0; - 信号量
rCountMutex
:控制对 rCount 读者计数器的互斥修改,初始值为 1;
接下来看看代码的实现:
上面的这种实现,是读者优先的策略,因为只要有读者正在读的状态,后来的读者都可以直接进入,如果读者持续不断进入,则写者会处于饥饿状态。
方案二
那既然有读者优先策略,自然也有写者优先策略:
- 只要有写者准备要写入,写者应尽快执行写操作,后来的读者就必须阻塞;
- 如果有写者持续不断写入,则读者就处于饥饿;
在方案一的基础上新增如下变量:
- 信号量
rMutex
:控制读者进入的互斥信号量,初始值为 1; - 信号量
wDataMutex
:控制写者写操作的互斥信号量,初始值为 1; - 写者计数
wCount
:记录写者数量,初始值为 0; - 信号量
wCountMutex
:控制 wCount 互斥修改,初始值为 1;
具体实现如下代码:
注意,这里 rMutex
的作用,开始有多个读者读数据,它们全部进入读者队列,此时来了一个写者,执行了 P(rMutex)
之后,后续的读者由于阻塞在 rMutex
上,都不能再进入读者队列,而写者到来,则可以全部进入写者队列,因此保证了写者优先。
同时,第一个写者执行了 P(rMutex)
之后,也不能马上开始写,必须等到所有进入读者队列的读者都执行完读操作,通过 V(wDataMutex)
唤醒写者的写操作。
方案三
既然读者优先策略和写者优先策略都会造成饥饿的现象,那么我们就来实现一下公平策略。
公平策略:
- 优先级相同;
- 写者、读者互斥访问;
- 只能一个写者访问临界区;
- 可以有多个读者同时访问临界资源;
具体代码实现:
看完代码不知你是否有这样的疑问,为什么加了一个信号量 flag
,就实现了公平竞争?
对比方案一的读者优先策略,可以发现,读者优先中只要后续有读者到达,读者就可以进入读者队列, 而写者必须等待,直到没有读者到达。
没有读者到达会导致读者队列为空,即 rCount==0
,此时写者才可以进入临界区执行写操作。
而这里 flag
的作用就是阻止读者的这种特殊权限(特殊权限是只要读者到达,就可以进入读者队列)。
比如:开始来了一些读者读数据,它们全部进入读者队列,此时来了一个写者,执行 P(falg)
操作,使得后续到来的读者都阻塞在 flag
上,不能进入读者队列,这会使得读者队列逐渐为空,即 rCount
减为 0。
这个写者也不能立马开始写(因为此时读者队列不为空),会阻塞在信号量 wDataMutex
上,读者队列中的读者全部读取结束后,最后一个读者进程执行 V(wDataMutex)
,唤醒刚才的写者,写者则继续开始进行写操作。
怎么避免死锁
面试过程中,死锁也是高频的考点,因为如果线上环境真多发生了死锁,那真的出大事了。
这次,我们就来系统地聊聊死锁的问题。
- 死锁的概念;
- 模拟死锁问题的产生;
- 利用工具排查死锁问题;
- 避免死锁问题的发生;
死锁的概念
在多线程编程中,我们为了防止多线程竞争共享资源而导致数据错乱,都会在操作共享资源之前加上互斥锁,只有成功获得到锁的线程,才能操作共享资源,获取不到锁的线程就只能等待,直到锁被释放。
那么,当两个线程为了保护两个不同的共享资源而使用了两个互斥锁,那么这两个互斥锁应用不当的时候,可能会造成两个线程都在等待对方释放锁,在没有外力的作用下,这些线程会一直相互等待,就没办法继续运行,这种情况就是发生了死锁。
举个例子,小林拿了小美房间的钥匙,而小林在自己的房间里,小美拿了小林房间的钥匙,而小美也在自己的房间里。如果小林要从自己的房间里出去,必须拿到小美手中的钥匙,但是小美要出去,又必须拿到小林手中的钥匙,这就形成了死锁。
死锁只有同时满足以下四个条件才会发生:
- 互斥条件;
- 持有并等待条件;
- 不可剥夺条件;
- 环路等待条件;
互斥条件
互斥条件是指多个线程不能同时使用同一个资源。
比如下图,如果线程 A 已经持有的资源,不能再同时被线程 B 持有,如果线程 B 请求获取线程 A 已经占用的资源,那线程 B 只能等待,直到线程 A 释放了资源。
持有并等待条件
持有并等待条件是指,当线程 A 已经持有了资源 1,又想申请资源 2,而资源 2 已经被线程 C 持有了,所以线程 A 就会处于等待状态,但是线程 A 在等待资源 2 的同时并不会释放自己已经持有的资源 1。
不可剥夺条件
不可剥夺条件是指,当线程已经持有了资源 ,在自己使用完之前不能被其他线程获取,线程 B 如果也想使用此资源,则只能在线程 A 使用完并释放后才能获取。
环路等待条件
环路等待条件指的是,在死锁发生的时候,两个线程获取资源的顺序构成了环形链。
比如,线程 A 已经持有资源 2,而想请求资源 1, 线程 B 已经获取了资源 1,而想请求资源 2,这就形成资源请求等待的环形图。
模拟死锁问题的产生
Talk is cheap. Show me the code.
下面,我们用代码来模拟死锁问题的产生。
首先,我们先创建 2 个线程,分别为线程 A 和 线程 B,然后有两个互斥锁,分别是 mutex_A 和 mutex_B,代码如下:
pthread_mutex_t mutex_A = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex_B = PTHREAD_MUTEX_INITIALIZER;
int main()
{
pthread_t tidA, tidB;
//创建两个线程
pthread_create(&tidA, NULL, threadA_proc, NULL);
pthread_create(&tidB, NULL, threadB_proc, NULL);
pthread_join(tidA, NULL);
pthread_join(tidB, NULL);
printf("exit\n");
return 0;
}
接下来,我们看下线程 A 函数做了什么。
//线程函数 A
void *threadA_proc(void *data)
{
printf("thread A waiting get ResourceA \n");
pthread_mutex_lock(&mutex_A);
printf("thread A got ResourceA \n");
sleep(1);
printf("thread A waiting get ResourceB \n");
pthread_mutex_lock(&mutex_B);
printf("thread A got ResourceB \n");
pthread_mutex_unlock(&mutex_B);
pthread_mutex_unlock(&mutex_A);
return (void *)0;
}
可以看到,线程 A 函数的过程:
- 先获取互斥锁 A,然后睡眠 1 秒;
- 再获取互斥锁 B,然后释放互斥锁 B;
- 最后释放互斥锁 A;
//线程函数 B
void *threadB_proc(void *data)
{
printf("thread B waiting get ResourceB \n");
pthread_mutex_lock(&mutex_B);
printf("thread B got ResourceB \n");
sleep(1);
printf("thread B waiting get ResourceA \n");
pthread_mutex_lock(&mutex_A);
printf("thread B got ResourceA \n");
pthread_mutex_unlock(&mutex_A);
pthread_mutex_unlock(&mutex_B);
return (void *)0;
}
可以看到,线程 B 函数的过程:
- 先获取互斥锁 B,然后睡眠 1 秒;
- 再获取互斥锁 A,然后释放互斥锁 A;
- 最后释放互斥锁 B;
然后,我们运行这个程序,运行结果如下:
thread B waiting get ResourceB
thread B got ResourceB
thread A waiting get ResourceA
thread A got ResourceA
thread B waiting get ResourceA
thread A waiting get ResourceB
// 阻塞中。。。
可以看到线程 B 在等待互斥锁 A 的释放,线程 A 在等待互斥锁 B 的释放,双方都在等待对方资源的释放,很明显,产生了死锁问题。
避免死锁问题的发生
前面我们提到,产生死锁的四个必要条件是:互斥条件、持有并等待条件、不可剥夺条件、环路等待条件。
那么避免死锁问题就只需要破环其中一个条件就可以,最常见的并且可行的就是使用资源有序分配法,来破环环路等待条件。
那什么是资源有序分配法呢?
线程 A 和 线程 B 获取资源的顺序要一样,当线程 A 是先尝试获取资源 A,然后尝试获取资源 B 的时候,线程 B 同样也是先尝试获取资源 A,然后尝试获取资源 B。也就是说,线程 A 和 线程 B 总是以相同的顺序申请自己想要的资源。
我们使用资源有序分配法的方式来修改前面发生死锁的代码,我们可以不改动线程 A 的代码。
我们先要清楚线程 A 获取资源的顺序,它是先获取互斥锁 A,然后获取互斥锁 B。
所以我们只需将线程 B 改成以相同顺序的获取资源,就可以打破死锁了。
线程 B 函数改进后的代码如下:
//线程 B 函数,同线程 A 一样,先获取互斥锁 A,然后获取互斥锁 B
void *threadB_proc(void *data)
{
printf("thread B waiting get ResourceA \n");
pthread_mutex_lock(&mutex_A);
printf("thread B got ResourceA \n");
sleep(1);
printf("thread B waiting get ResourceB \n");
pthread_mutex_lock(&mutex_B);
printf("thread B got ResourceB \n");
pthread_mutex_unlock(&mutex_B);
pthread_mutex_unlock(&mutex_A);
return (void *)0;
}
执行结果如下,可以看,没有发生死锁。
thread B waiting get ResourceA
thread B got ResourceA
thread A waiting get ResourceA
thread B waiting get ResourceB
thread B got ResourceB
thread A got ResourceA
thread A waiting get ResourceB
thread A got ResourceB
exit
总结
简单来说,死锁问题的产生是由两个或者以上线程并行执行的时候,争夺资源而互相等待造成的。
死锁只有同时满足互斥、持有并等待、不可剥夺、环路等待这四个条件的时候才会发生。
所以要避免死锁问题,就是要破坏其中一个条件即可,最常用的方法就是使用资源有序分配法来破坏环路等待条件。